Online Talk: Daniel Slilaty

Monday, May 31, 3pm ET (8pm BST, 7am Tue NZST)
Daniel Slilaty, Wright State University
Orientations of golden-mean matroids

 
Abstract:

Tutte proved that a binary matroid is representable over some field of characteristic other than 2 if and only if the matroid is regular. His result inspired the discovery of analogs for $GF(3)$-representable matroids by Whittle, $GF(4)$-representable matroids by Vertigan as well as Pendavingh and Van Zwam, and $GF(5)$-representable matroids by Pendavingh and Van Zwam.

Bland and Las Vergnas proved that a binary matroid’s orientations correspond to its regular representations. (Minty’s result on digraphoids is closely related.) Lee and Scobee proved that a $GF(3)$-representable matroid’s orientations correspond to its dyadic representations. In this talk we will explore orientations of $GF(4)$-representable matroids. A natural partial field to use is the golden-mean partial field; however, not every orientation of a $GF(4)$-representable matroid comes from a golden-mean representation. For example, $U_{3,6}$ has 372 orientations but only 12 of them come from golden-mean representations. We will give a combinatorial characterization of those orientations of $GF(4)$-representable matroids which do come from golden-mean representations and show that these orientations correspond one-to-one to the golden-mean representations.

Joint work with Jakayla Robbins.

Online Talk: Bertrand Guenin

Monday, May 17, 3pm ET (8pm BST, 7am Tue NZST)
Bertrand Guenin, University of Waterloo
Graphs with the same even cycles

 
Abstract:
In 1933 Whitney described the relationship between pairs of graphs with the same set of cycles (here we view cycles as sets of edges). A natural question is to try to understand the relationship between pairs of graphs with the same set of even cycles (a cycle is even if it contains an even number of edges). We show that there is a nice answer to this question under some connectivity assumptions and we explain the relevance of this question to matroid theory.
 
This is joint work with: Cheolwon Heo, Zouhaier Ferchiou, Irene Pivotto.

Online Talk: Sophie Spirkl

Monday, May 10, 3pm ET (8pm BST, 7am Tue NZST)
Sophie Spirkl, University of Waterloo
The complexity of list-5-colouring H-free graphs

 
Abstract:
A $k$-list-assignment for a graph $G$ is a function $L$ from $V(G)$ to subsets of $\{1, …, k\}$. The list-$k$-colouring problem asks, given $G$ and a $k$-list-assignment $L$, is there a colouring $f$ of $G$ with $f(v)$ in $L(v)$ for all $v$ in $V(G)$? This generalizes the $k$-colouring problem (where we use $L(v) = \{1, …, k\}$ for every vertex).
 
For $k$ at least $3$, both $k$-colouring and list-$k$-colouring are NP-hard, which motivates studying the complexity of these problems when the input is restricted to $H$-free graphs (for a fixed $H$, excluded as an induced subgraph).
 
I will present an algorithm for list-$5$-colouring restricted to $H$-free graphs for all $H$ which consist of connected components each of which is a $3$-vertex path. This, together with previous results, gives a complete answer to the question, “for which $H$ is list-$5$-colouring restricted to $H$-free graphs NP-hard?”
 
Joint work with Sepehr Hajebi and Yanjia Li.

Online talk: Daniel Bernstein

Monday, April 19, 3pm ET (8pm BST, 7am Tue NZST)
Daniel Bernstein, MIT
Rigidity of symmetry-forced frameworks

 
Abstract:

The fundamental problem in rigidity theory is to determine whether a given immersion of a graph into $\mathbb{R}^d$ can be continuously deformed, treating the edges as rigid bars that can move freely about their incident vertices. Rigidity is a generic property of each fixed graph $G$, in the sense that almost all immersions of $G$ into $\mathbb{R}^d$ are rigid, or almost all immersions are flexible. The graphs that are generically rigid in $\mathbb{R}^d$ are the spanning sets of a certain matroid. The main result of my talk will be about rigidity in the plane when the graphs and their immersions have certain symmetry constraints.