Tuza's conjecture for binary matroids

Jorn **van der Pol** (University of Waterloo)

based on joint work with Kazuhiro **Nomoto**

Preprint available at arXiv:2112.06385

Tuza's (original) conjecture

 $\tau(G)$: size of min. \triangle -hitting set

 $\nu(G)$: max. number of edge-disjoint \triangle s

$$\nu(G) \leq \tau(G) \leq 3\nu(G)$$

Tuza's (original) conjecture

Tuza's conjecture (1981): $\tau(G) \leq 2\nu(G)$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Haxell (1999): $\tau(G) \le 2.87\nu(G)$

Does Tuza's conjecture hold for binary matroids?

Conjecture: $\tau(M) \le 2\nu(M)$ for all simple binary matroids M with no F_7 -restriction

Nomoto-vdP (2021⁺): True for cographic matroids Tuza (1990): True for planar graphs Haxell (1999): $\tau(M) \le 2.87\nu(M)$ for such matroids

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ