# Dependencies Among Dependencies

Zach Walsh

joint with James Oxley



December 14, 2021

# **Derived Matroids**

Rota '71: Investigate "dependencies among dependencies" in matroids.

|                                       |   |   |         | ۲ | a,6} | {a,c} | {b,c | } {d | ļ |
|---------------------------------------|---|---|---------|---|------|-------|------|------|---|
| 0                                     | 6 | ~ | 1       | ٩ | Γ1   | 1     | 0    | 0    |   |
| $M = \begin{bmatrix} 1 \end{bmatrix}$ | 1 | 1 | ۹<br>0] | 6 | 1    | 0     | 1    | 0    |   |
|                                       |   |   |         | с | 0    | 1     | 1    | 0    |   |
|                                       |   |   |         | d | 0    | 0     | 0    | 1    |   |

#### Definition (Longyear '80)

Given a binary matroid M, the *derived matroid*  $\delta M$  of M is the binary matroid on the set of circuits of M where a set C of circuits of M is independent in  $\delta M$  if and only if every non-empty subset of C has non-empty symmetric difference.

## **Open Problems**

- Which binary matroids are derived?
  - $U_{n,n+1}$  is not derived when  $n \ge 3$ .
  - PG(n-1,2) is derived when  $n \ge 1$ .
- Which binary matroids are derived from a graphic matroid? (or cographic, regular, etc.)

# Structural Properties of Derived Matroids

### Proposition (Oxley, Walsh)

If M is connected, then  $\delta M$  has an  $M(K_{r(\delta M)+1})$ -restriction.

Open Problems:

- If *M* is connected, is each pair of elements of  $\delta M$  in a common circuit of size at most four?
- Equivalently, if a binary matroid M has a partition into a pair of spanning circuits, does it have at least two such partitions?

Thomason '78: 'Yes' when M is a graphic.