Graphs with large chromatic number have lots of cycles

Theorem
A graph is 2-colourable if and only if it has no cycle of length $1 \bmod 2$.

Graphs with large chromatic number have lots of cycles

Theorem

A graph is 2-colourable if and only if it has no cycle of length 1 mod 2.

Theorem (Tuza)

If G has no cycles of length $1 \bmod k$, then G is k-colourable.

Graphs with large chromatic number have lots of cycles

Theorem

A graph is 2-colourable if and only if it has no cycle of length 1 mod 2.

Theorem (Tuza)

If G has no cycles of length $1 \bmod k$, then G is k-colourable.

Theorem (M., West; Referee)

If G has less than $\frac{k!}{2}$ cycles of length $1 \bmod k$, then G is k-colourable. Further, if G contains an edge e such that $G-e$ is k-colourable but G is not, then e lies in at least $(k-1)$! cycles of length $1 \bmod k$, and $G-e$ contains at least $\frac{(k-1)!}{2}$ cycles of length $0 \bmod k$.

Colourings $=$ Orientations

Theorem (Minty)

A graph G is k-colourable if and only if there exists an orientation of G in which no cycle of G has more than $(k-1)$ times as many forward edges as backward edges.

Colourings $=$ Orientations

Theorem (Minty)

A graph G is k-colourable if and only if there exists an orientation of G in which no cycle of G has more than $(k-1)$ times as many forward edges as backward edges.

Theorem (Tuza)

A graph G is k-colourable if and only if there exists an orientation of G in which no cycle of length $1 \bmod k$ of G has more than $(k-1)$ times as many forward edges as backwards edges.

The question

Conjecture

A graph is k-colourable if and only if there exists an orientation of G such that at most $(k-1)!-1$ cycles of length $1 \bmod k$ have more than $(k-1)$ times as many forward edges as backwards edges.

