Bounding the clique number

- $\chi(G)$: the **chromatic number** of *G*
- $\omega(G)$: the **clique number** of *G*

Q: What assumptions on *G* imply that $\chi(G) \leq f(\omega(G))$ for some *f*?

Such classes are called χ **-bounded**.

Direction: Geometric intersection graphsDirection: Graphs admitting decompositionsDirection: *H*-free graphs for fixed *H*

Q: When can we choose *f* to be a polynomial?

Esperet: Is there a hereditary class of graphs that is χ -bounded, but **not** polynomially χ -bounded?

Bounding the biclique number

What if we exclude a **biclique** instead?

 $\widehat{\omega}(G)$: largest *t* such that $K_{t,t}$ is a **subgraph** of *G*

Theorem (Kühn, Osthus)

For every graph *H* there is a function $f_H(\cdot)$ such that the following holds. Suppose *G* does not contain **any subdivision** of *H* as an induced subgraph. Then degeneracy(*G*) $\leq f_H(\widehat{\omega}(G))$.

Problem

Can we always choose $f_H(\cdot)$ to be a polynomial?

 Works for:
 [BPRzTW 21, SSS 21⁺]

 paths,
 trees,
 cycles.

 Next step:
 K_{2.3}?