When is the maximum average degree of a graph
tied to the size of its largest balanced biclique?
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biclique number 7(G) =
maximum t so that G has K;;-subgraph



For which hereditary classes of graphs does there
exist a function f so that avgdeg(G) < f(7(G))?
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Theorem (Kwan, Letzter, Sudakov, Tran)

It is enough to consider the bipartite graphs in the class.
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Theorem (McCarty, generalizes Kiihn & Osthus)

This occurs iff there exists ¢ € 7 such that every bipartite,
4-cycle-free graph in the class has avgdeg < c.
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Problem
Construct such a class where we cannot take f = poly(7).

It is unknown if such a class exists. See Esperet's Conjecture.



