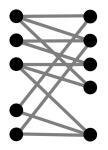
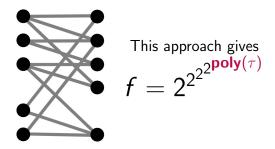


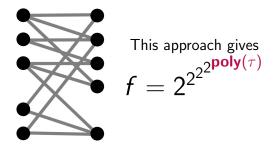
biclique number $\tau(G) :=$ maximum t so that G has $K_{t,t}$ -subgraph



biclique number $\tau(G) :=$ maximum t so that G has $K_{t,t}$ -subgraph


Theorem (Kwan, Letzter, Sudakov, Tran)

It is enough to consider the bipartite graphs in the class.


Theorem (McCarty, generalizes Kühn & Osthus)

This occurs iff there exists $c \in \mathbb{Z}$ such that every bipartite, 4-cycle-free graph in the class has avgdeg $\leq c$.

Theorem (McCarty, generalizes Kühn & Osthus)

This occurs iff there exists $c \in \mathbb{Z}$ such that every bipartite, 4-cycle-free graph in the class has avgdeg $\leq c$.

Problem

Construct such a class where we cannot take $f = poly(\tau)$.

It is unknown if such a class exists. See Esperet's Conjecture.