When is the maximum average degree of a graph tied to the size of its largest balanced biclique?

When is the maximum average degree of a graph tied to the size of its largest balanced biclique?

When is the maximum average degree of a graph tied to the size of its largest balanced biclique?

When is the maximum average degree of a graph tied to the size of its largest balanced biclique?

biclique number $\tau(G):=$
maximum t so that G has $K_{t, t}$-subgraph

For which hereditary classes of graphs does there exist a function f so that $\operatorname{avgdeg}(G) \leq f(\tau(G))$?

biclique number $\tau(G):=$
maximum t so that G has $K_{t, t}$-subgraph

For which hereditary classes of graphs does there exist a function f so that $\operatorname{avgdeg}(G) \leq f(\tau(G))$?

Theorem (Kwan, Letzter, Sudakov, Tran)
It is enough to consider the bipartite graphs in the class.

For which hereditary classes of graphs does there exist a function f so that $\operatorname{avgdeg}(G) \leq f(\tau(G))$?

Theorem (McCarty, generalizes Kühn \& Osthus)
This occurs iff there exists $c \in \mathbb{Z}$ such that every bipartite, 4 -cycle-free graph in the class has avgdeg $\leq c$.

For which hereditary classes of graphs does there exist a function f so that $\operatorname{avgdeg}(G) \leq f(\tau(G))$?

This approach gives

$$
f=2^{2^{2^{2^{\text {poly }(\tau)}}}}
$$

Theorem (McCarty, generalizes Kühn \& Osthus)
This occurs iff there exists $c \in \mathbb{Z}$ such that every bipartite, 4 -cycle-free graph in the class has avgdeg $\leq c$.

For which hereditary classes of graphs does there exist a function f so that $\operatorname{avgdeg}(G) \leq f(\tau(G))$?

This approach gives

$$
f=2^{2^{2^{2^{\text {poly }(\tau)}}}}
$$

Problem

Construct such a class where we cannot take $f=\operatorname{poly}(\tau)$.
It is unknown if such a class exists. See Esperet's Conjecture.

