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biclique number τ(G ) :=
maximum t so that G has Kt,t-subgraph
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Theorem (Kwan, Letzter, Sudakov, Tran)

It is enough to consider the bipartite graphs in the class.
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Problem

Construct such a class where we cannot take f = poly(τ).

It is unknown if such a class exists. See Esperet’s Conjecture.


