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Rigidity theory basics

Definition

A bar and joint framework in d dimensions consists of
@ a graph G, and
e a function p: V(G) — RY,

Such frameworks can be rigid or flexible.

Example

Let G be the graph on vertex set V = {1,2, 3,4} with edges
{12,23,34,14}. Below we give three functions p : V — R2. The first two
frameworks are flexible and the third one is rigid.

p(4) I:I P(3) p(4) U P(3) p(4) V P(3)
p(1) p(2) p(1) - p(2) p(1) ® p(2)
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Generic rigidity

Let G be the graph on vertex set {1,2, 3,4} with all edges, aside from
{1,3}. For generic p: {1,2,3,4} — R?, the resulting framework is rigid.

Definition

A graph G is generically rigid in R? if for every generic p: V — RY, the
resulting framework is rigid. Such a graph is minimal if removing any edge
destroys this property.

We will soon see that generically rigid graphs in RY are the spanning sets

of a certain matroid.
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Classical results

Which graphs are (minimally) generically rigid in R9?

Proposition (Folklore)

A graph is generically rigid in R if and only if it is connected.

@._.,,,k

Theorem (Pollaczek-Geiringer 1927, “Laman’s Theorem”)

A graph G is minimally generically rigid in R? if and only if
Q |E(G)| =2|V(G)|—3, and
@ |E(G")| <2|V(G")| — 3 for all subgraphs G’ of G.

Generic rigidity in 3 dimensions remains an open problem.
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Symmetry-forced rigidity

Frameworks appearing in many applications have forced symmetry.
Symmetry-forced rigidity ignores flexes that break the symmetry.
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Gain graphs

Definition

Given a group S, a graph G has S-symmetry if there exists a free action of
S on V(G) such that the action of each element of S is a graph
isomorphism of G.

Symmetric frameworks can be compactly represented with gain graphs.

Definition

Given a group S, an S-gain graph is a directed multigraph G whose arcs
are labeled by elements of S.

A

A? A is a rotation 90° counterclockwise.

S={I,A A2, A3}
A
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History of symmetry-forced rigidity

Main problem: For each d and each subgroup S of Euclidean isometries
of RY, characterize the S-gain graphs that are minimally generically rigid

@ Mathematical foundations: Schulze and Whiteley 2010, Borcea and
Streinu 2010
@ Combinatorial characterizations:
o Two-dimensional (flexible) lattices — Malestein and Theran 2013; Ross
2015
e Three-dimensional lattices for body-bar frameworks — Ross 2015
e All rotation groups and odd dihedral groups — Malestein and Theran
2014; Jordan, Kaszanitzky, and Tanigawa 2016
o Wallpaper groups with flexible lattices — Malestein and Theran 2015
This talk: tropical geometry, submodular functions, and matroid lifts to
unify and generalize many aspects of the characterizations above
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Balanced cycles

Definition
The gain of a walk W in a gain graph G is the product of the labels in W,
inverting when an arc is traversed backwards. A balanced cycle is a cycle

whose gain is the identity.

=1 )
S=1{I,A A% A3

R, RA, RA?, RA3}
p_ (10
~\o0 1

Balancedness of a cycle not affected by:

@ reversing an edge and inverting its label
@ starting at a different vertex
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Dutch bicycles and complete gain graphs

Definition

A bicyclic graph is a subdivision of one of the following graphs:

OO O

A bicyclic gain graph is Dutch if each pair of closed walks based at the
same vertex have gains that commute.

Definition

| A

Given a group S, the complete gain graph K,(S) has vertex set {1,...,n}
and |S| arcs from i to j when i < j and |S| — 1 loops at each vertex. Each
non-loop edge between i and j is labeled by a distinct element of S and
each loop edge is labeled by a distinct non-identity element of S.

0

Ka(Zy) = 1 Q(:.Q 1

1
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The main theorem

Theorem (DIB 2021)
Let S be a subgroup of R? x SO(2). For each S-gain graph H, define

3 if every cycle in H is balanced
(H) 2 if not, and the gain of each cycle is a translation
(87 =

1 if none of the above, and all bicyclic subgraphs are Dutch

0 otherwise.
Then G is minimally generically infinitesimally rigid in R? if and only if
[E(G)| = 2[V(G)| — a(Kjv(6)/(S5))
and for all subgraphs G' of G,
|E(G")] <2|V(G)] — a(G).

To do next: extend proof technique to accommodate reflections
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Recall that composition in R? x SO(2) is given by (b1, A1)(b2, A2) = (b1 + Arby, A1A2).
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Outline of proof

S-symmetry forced rigid graphs are spanning sets in algebraic matroid
of S-symmetric Cayley-Menger variety

When S C R? x SO(2), this is a Hadamard product of affine spaces
@ Each affine space defines two matroids, one which is an elementary
lift of the other

@ Describe the algebraic matroid of a Hadamard product of affine spaces
in terms of these two matroids for each (proof uses tropical geometry)

@ Apply to our setting - involves a particular lift of the gain graphic
matroid of a complete gain graph
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Algebraic matroids

Each subset S C E defines a coordinate projection s : CE — C2.

Let V C CF be an irreducible variety. A given S C E is
Q independent if dim(ws(V)) = |S|,
@ spanning if dim(ws(V)) = dim(V), and
© a basis if S is both independent and spanning.

The common combinatorial structure described by any one of these set
systems is called the algebraic matroid underlying V' .

v

Let E = {1,2,3} x {1,2,3} and V C CF be the variety of 3 x 3 matrices
of rank < 1. Then S :={(1,1),(1,2),(1,3),(2,1),(2,2),(3,3)} is
spanning, but not independent.
X111 X12  X13
ms(V) = Xo1 X2 | iX11xe2 — Xo1x02 =0
X33
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Algebraic matroids in rigidity theory

Definition

Given a pair of integers d < n, the Cayley-Menger variety of n points in
RY, denoted CM? is the affine variety embedded in C([;]) as the Zariski

n:

closure of the set of possible squared pairwise euclidean distances between
n points in RY.

Let d = 2. Then the ij coordinate of CM? is parameterized as
dij = (xi — %)% + (vi — y)*.

Observation

A graph G = ([n], E) is generically rigid in RY if and only if E is spanning
in CMY. Moreover, G is minimally generically rigid if and only if E is a
basis of CMZ.
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A matroid is a pair M = (E,T) where E is a set and Z C 2F satisfies
© 7 is nonempty,
Q@ ifleZand JC/, then J€Z, and
@ if I,J € T with |I| = |J| + 1, then there exists e € | such that
Ju{e} eT.
Elements of Z are called the independent sets of M.

The rank function ry : 2E — Z>q of a matroid M = (E,Z) maps S C E
to |I| where [ is the largest independent subset of S.

v

A spanning set of M = (E,Z) is a set S C E of maximum rank. A basis is
a spanning independent set.

V.
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Matroids from submodular functions

Definition (Edmonds 1970)

Let f : 26 — Z be increasing and submodular, i.e. satisfies
Q f(A) < f(B) whenever ACBC E
@ f(AUB)+ f(AN B) < f(A) + f(B).
Define M(f) to be the matroid on E where | C E is independent iff
forall ' C I, I"'=0 or [|I'| <f(I).

Example (Pym and Perfect 1970)
If r1,...,rq are rank functions of matroids My, ..., My on ground set E,
then [ is independent in M(ri + -+ rg) iff | = /L U---U Iy where [; is
independent in M;.
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Hadamard product of varieties

The Hadamard product u v of u,v € FE is (UeVe)ece. The Hadamard
product of varieties U, V is the Zariski closure of {uxv :u e U,v € V}.

Theorem (DIB 2021)

Let U,V C CE be linear spaces. Then
M(U* V) = M(rM(U) aF r_/Vl(V) — 1)

CM?2 = U x U where U is the linear space spanned by the incidence matrix
of the complete graph on n vertices.

A

Corollary (Lovasz and Yemini 1982)

Let r be the rank function of the graphic matroid underlying K,. Then
M(2r — 1) is the algebraic matroid underlying CM?2.

A\
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Symmetric Cayley-Menger varieties

e S is a group of Euclidean isometries of RY

o FKn(5) denotes the F-vector space with coordinates indexed by the
arcs of Kp(S)

o Define d : (RY)" — RK(S) by

d(Z)e = stource(e) - gain(e)ztarget(e)ug'
o CMS is the Zariski closure of the image of d
@ S-gain graph G is generically infinitesimally rigid iff spanning in CMS

-1 0
A_<0 _1> S={A1 A e )A
d(x1,y1,%2,y2) = (4X12 +4y2, (x1—x)?+ (11 — )2,

(1 +x)? + (1 +y2)% 43+ 4)’22)
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Translations and rotations

d =2 and S is a subgroup of R? x SO(2). If arc e of K,(S) has gain

a cos(f) —sin(0)
b/’ \sin(f)  cos(d)
then under the following change of parameters

Xy + Yv yVHXv_yv

—
X 2 2i

the entry of CMS corresponding to e is
(Xsource(e) - elextarget(e) —a- bi)()/source(e) - e_’eytarget(e) —a+ b’)
and so CM¢ is a Hadamard product of affine spaces.

This part gets more complicated, though not hopeless, when S has
reflections.
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Algebraic matroid of a Hadamard product of affine spaces

Let V = {Ax + b: x € C?} C CF be an affine space.
o the algebraic matroid M(V) of V is the row matroid of A
o define ML(V) to be the row matroid of (A b)
o ML(V) is an elementary lift of M(V)
o |/ C E is independent in M(V) implies / independent in ML(V)

Theorem (DIB 2021)

Let U,V C CE be finite-dimensional affine spaces and define f : 2 — 7
by

rM(U)(S)-I—rM(V)(S) if rM(U)(S) < rML(U)(S)
f(S) = or rM(V)(S) < rML(V)(S)
rawy(S) + rvvy(S) — 1 otherwise.
Then M(U x V) = M(f).
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Gain graphic matroids

Definition

The gain-graphic matroid of a gain graph G is the matroid supported on
the arc set of G whose independent sets are sets of arcs such that each
connected component has at most one cycle, which is not balanced.

In the above gain graph, adding the loop to any spanning tree produces a
basis of the underlying gain-graphic matroid.
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Putting it all together

If S C R? x SO(2), CMS = Ux V where U, V are affine spaces satisfying
e M(U) = M(V) is the gain-graphic matroid of the gain graph
obtained from K,(S) by ignoring the translation part of each gain
o ML(U) = ME(V) is obtained from the gain graph of K,(S) by
making non-Dutch bicyclic subgraphs independent

Theorem (DIB 2021)
Let S be a subgroup of R? x SO(2). For each S-gain graph H, define

3 if every cycle in H is balanced

a(H) = 2 if not, and the gain of each cycle is a translation
1 if none of the above, and all bicyclic subgraphs are Dutch
0 otherwise.

Then G is independent in M(CMS) if and only if

|E(G")| < 2|V(G")| — a(G’) for all subgraphs G’ of G.
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Thank you for your attention!

https://arxiv.org/abs/2003.10529
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