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Rigidity theory basics

Definition

A bar and joint framework in d dimensions consists of

a graph G , and

a function p : V (G )→ Rd .

Such frameworks can be rigid or flexible.

Example

Let G be the graph on vertex set V = {1, 2, 3, 4} with edges
{12, 23, 34, 14}. Below we give three functions p : V → R2. The first two
frameworks are flexible and the third one is rigid.

p(1) p(2)

p(3)p(4)

p(1) p(2)

p(3)p(4)

p(1) p(2)

p(3)p(4)
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Generic rigidity

Let G be the graph on vertex set {1, 2, 3, 4} with all edges, aside from
{1, 3}. For generic p : {1, 2, 3, 4} → R2, the resulting framework is rigid.

p(1) p(2)

p(3)p(4) p(1)

p(2)

p(3)

p(4)

Definition

A graph G is generically rigid in Rd if for every generic p : V → Rd , the
resulting framework is rigid. Such a graph is minimal if removing any edge
destroys this property.

We will soon see that generically rigid graphs in Rd are the spanning sets
of a certain matroid.
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Classical results

Question

Which graphs are (minimally) generically rigid in Rd?

Proposition (Folklore)

A graph is generically rigid in R1 if and only if it is connected.

Theorem (Pollaczek-Geiringer 1927, “Laman’s Theorem”)

A graph G is minimally generically rigid in R2 if and only if

1 |E (G )| = 2|V (G )| − 3, and

2 |E (G ′)| ≤ 2|V (G ′)| − 3 for all subgraphs G ′ of G.

Generic rigidity in 3 dimensions remains an open problem.
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Symmetry-forced rigidity

Frameworks appearing in many applications have forced symmetry.
Symmetry-forced rigidity ignores flexes that break the symmetry.

-2 -1 1 2

-2

-1

1

2

(e1, I ) (e2, I )

(0,A)

Main problem: Characterize generic symmetry-forced rigidity in Rd .
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Gain graphs

Definition

Given a group S, a graph G has S-symmetry if there exists a free action of
S on V (G ) such that the action of each element of S is a graph
isomorphism of G .

Symmetric frameworks can be compactly represented with gain graphs.

Definition

Given a group S, an S-gain graph is a directed multigraph G whose arcs
are labeled by elements of S.

A

A

A2 A is a rotation 90◦ counterclockwise.

S = {I ,A,A2,A3}
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History of symmetry-forced rigidity

Main problem: For each d and each subgroup S of Euclidean isometries
of Rd , characterize the S-gain graphs that are minimally generically rigid

Mathematical foundations: Schulze and Whiteley 2010, Borcea and
Streinu 2010

Combinatorial characterizations:

Two-dimensional (flexible) lattices – Malestein and Theran 2013; Ross
2015
Three-dimensional lattices for body-bar frameworks – Ross 2015
All rotation groups and odd dihedral groups – Malestein and Theran
2014; Jordán, Kaszanitzky, and Tanigawa 2016
Wallpaper groups with flexible lattices – Malestein and Theran 2015

This talk: tropical geometry, submodular functions, and matroid lifts to
unify and generalize many aspects of the characterizations above

Daniel Irving Bernstein (MIT and Fields) Symmetry-forced rigidity in the plane 7 / 23



Balanced cycles

Definition

The gain of a walk W in a gain graph G is the product of the labels in W ,
inverting when an arc is traversed backwards. A balanced cycle is a cycle
whose gain is the identity.

A =

(
0 −1
1 0

)

R =

(
−1 0
0 1

) S = {I ,A,A2,A3,

R,RA,RA2,RA3}

A

R

R

A

R

RA2

Balancedness of a cycle not affected by:

reversing an edge and inverting its label

starting at a different vertex
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Dutch bicycles and complete gain graphs

Definition

A bicyclic graph is a subdivision of one of the following graphs:

A bicyclic gain graph is Dutch if each pair of closed walks based at the
same vertex have gains that commute.

Definition

Given a group S, the complete gain graph Kn(S) has vertex set {1, . . . , n}
and |S| arcs from i to j when i < j and |S| − 1 loops at each vertex. Each
non-loop edge between i and j is labeled by a distinct element of S and
each loop edge is labeled by a distinct non-identity element of S.

K2(Z2) = 1 1

0

1
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The main theorem

Theorem (DIB 2021)

Let S be a subgroup of R2 o SO(2). For each S-gain graph H, define

α(H) =


3 if every cycle in H is balanced

2 if not, and the gain of each cycle is a translation

1 if none of the above, and all bicyclic subgraphs are Dutch

0 otherwise.

Then G is minimally generically infinitesimally rigid in R2 if and only if

|E (G )| = 2|V (G )| − α(K|V (G)|(S))

and for all subgraphs G ′ of G,

|E (G ′)| ≤ 2|V (G ′)| − α(G ′).

To do next: extend proof technique to accommodate reflections
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Example

(e1, I ) (e2, I )

(0, I )

(0, I ) (0, I )

(0,A)

-2 -1 1 2

-2

-1

1

2

(e1,A) (e2,A)

(0, I )

(0, I ) (0, I )

(0,A)

-2 -1 1 2

-2

-1

1

2

Recall that composition in R2 o SO(2) is given by (b1,A1)(b2,A2) = (b1 + A1b2,A1A2).
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Outline of proof

S-symmetry forced rigid graphs are spanning sets in algebraic matroid
of S-symmetric Cayley-Menger variety

When S ⊆ R2 o SO(2), this is a Hadamard product of affine spaces

Each affine space defines two matroids, one which is an elementary
lift of the other

Describe the algebraic matroid of a Hadamard product of affine spaces
in terms of these two matroids for each (proof uses tropical geometry)

Apply to our setting - involves a particular lift of the gain graphic
matroid of a complete gain graph
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Algebraic matroids

Each subset S ⊆ E defines a coordinate projection πS : CE → CS .

Definition

Let V ⊆ CE be an irreducible variety. A given S ⊆ E is

1 independent if dim(πS(V )) = |S |,
2 spanning if dim(πS(V )) = dim(V ), and

3 a basis if S is both independent and spanning.

The common combinatorial structure described by any one of these set
systems is called the algebraic matroid underlying V .

Let E = {1, 2, 3} × {1, 2, 3} and V ⊆ CE be the variety of 3× 3 matrices
of rank ≤ 1. Then S := {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 3)} is
spanning, but not independent.

πS(V ) =


x11 x12 x13
x21 x22 ·
· · x33

 : x11x22 − x21x22 = 0


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Algebraic matroids in rigidity theory

Definition

Given a pair of integers d ≤ n, the Cayley-Menger variety of n points in

Rd , denoted CMd
n , is the affine variety embedded in C([n]2 ) as the Zariski

closure of the set of possible squared pairwise euclidean distances between
n points in Rd .

Example

Let d = 2. Then the ij coordinate of CM2
n is parameterized as

dij = (xi − xj)
2 + (yi − yj)

2.

Observation

A graph G = ([n],E ) is generically rigid in Rd if and only if E is spanning
in CMd

n . Moreover, G is minimally generically rigid if and only if E is a
basis of CMd

n .
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Matroids

Definition

A matroid is a pair M = (E , I) where E is a set and I ⊆ 2E satisfies

1 I is nonempty,

2 if I ∈ I and J ⊆ I , then J ∈ I, and

3 if I , J ∈ I with |I | = |J|+ 1, then there exists e ∈ I such that
J ∪ {e} ∈ I.

Elements of I are called the independent sets of M.

Definition

The rank function rM : 2E → Z≥0 of a matroid M = (E , I) maps S ⊆ E
to |I | where I is the largest independent subset of S .

Definition

A spanning set of M = (E , I) is a set S ⊆ E of maximum rank. A basis is
a spanning independent set.
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Matroids from submodular functions

Definition (Edmonds 1970)

Let f : 2E → Z be increasing and submodular, i.e. satisfies

1 f (A) ≤ f (B) whenever A ⊆ B ⊆ E

2 f (A ∪ B) + f (A ∩ B) ≤ f (A) + f (B).

Define M(f ) to be the matroid on E where I ⊆ E is independent iff

for all I ′ ⊆ I , I ′ = ∅ or |I ′| ≤ f (I ′).

Example (Pym and Perfect 1970)

If r1, . . . , rd are rank functions of matroids M1, . . . ,Md on ground set E ,
then I is independent in M(r1 + · · ·+ rd) iff I = I1 ∪ · · · ∪ Id where Ij is
independent in Mj .
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Hadamard product of varieties

Definition

The Hadamard product u ? v of u, v ∈ FE is (ueve)e∈E . The Hadamard
product of varieties U,V is the Zariski closure of {u ? v : u ∈ U, v ∈ V }.

Theorem (DIB 2021)

Let U,V ⊆ CE be linear spaces. Then
M(U ? V ) =M(rM(U) + rM(V ) − 1).

Proposition

CM2
n = U ? U where U is the linear space spanned by the incidence matrix

of the complete graph on n vertices.

Corollary (Lovász and Yemini 1982)

Let r be the rank function of the graphic matroid underlying Kn. Then
M(2r − 1) is the algebraic matroid underlying CM2

n .

Daniel Irving Bernstein (MIT and Fields) Symmetry-forced rigidity in the plane 17 / 23



Symmetric Cayley-Menger varieties

S is a group of Euclidean isometries of Rd

FKn(S) denotes the F-vector space with coordinates indexed by the
arcs of Kn(S)

Define d : (Rd)n → RKn(S) by

d(z)e := ‖zsource(e) − gain(e)ztarget(e)‖22.
CMSn is the Zariski closure of the image of d

S-gain graph G is generically infinitesimally rigid iff spanning in CMSn

A =

(
−1 0
0 −1

)
S = {A, I} A A

I

A

d(x1, y1, x2, y2) =
(

4x21 + 4y21 , (x1 − x2)2 + (y1 − y2)2,

(x1 + x2)2 + (y1 + y2)2, 4x22 + 4y22

)
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Translations and rotations

d = 2 and S is a subgroup of R2 o SO(2). If arc e of Kn(S) has gain((
a

b

)
,

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

))
then under the following change of parameters

xv 7→
xv + yv

2
yv 7→

xv − yv
2i

the entry of CMSn corresponding to e is

(xsource(e) − e iθxtarget(e) − a− bi)(ysource(e) − e−iθytarget(e) − a + bi)

and so CMSn is a Hadamard product of affine spaces.

This part gets more complicated, though not hopeless, when S has
reflections.
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Algebraic matroid of a Hadamard product of affine spaces

Let V = {Ax + b : x ∈ Cd} ⊆ CE be an affine space.

the algebraic matroid M(V ) of V is the row matroid of A

define ML(V ) to be the row matroid of (A b)

ML(V ) is an elementary lift of M(V )

I ⊆ E is independent in M(V ) implies I independent in ML(V )

Theorem (DIB 2021)

Let U,V ⊆ CE be finite-dimensional affine spaces and define f : 2E → Z
by

f (S) =


rM(U)(S) + rM(V )(S) if rM(U)(S) < rML(U)(S)

or rM(V )(S) < rML(V )(S)

rM(U)(S) + rM(V )(S)− 1 otherwise.

Then M(U ? V ) =M(f ).
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Gain graphic matroids

Definition

The gain-graphic matroid of a gain graph G is the matroid supported on
the arc set of G whose independent sets are sets of arcs such that each
connected component has at most one cycle, which is not balanced.

A =

(
0 −1
1 0

)
S = {I ,A,A2,A3}

A

I

I

A

I

A2

Example

In the above gain graph, adding the loop to any spanning tree produces a
basis of the underlying gain-graphic matroid.
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Putting it all together

If S ⊆ R2 o SO(2), CMSn = U ? V where U,V are affine spaces satisfying

M(U) =M(V ) is the gain-graphic matroid of the gain graph
obtained from Kn(S) by ignoring the translation part of each gain

ML(U) =ML(V ) is obtained from the gain graph of Kn(S) by
making non-Dutch bicyclic subgraphs independent

Theorem (DIB 2021)

Let S be a subgroup of R2 o SO(2). For each S-gain graph H, define

α(H) =


3 if every cycle in H is balanced

2 if not, and the gain of each cycle is a translation

1 if none of the above, and all bicyclic subgraphs are Dutch

0 otherwise.

Then G is independent in M(CMSn ) if and only if
|E (G ′)| ≤ 2|V (G ′)| − α(G ′) for all subgraphs G ′ of G.
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The end

Thank you for your attention!

https://arxiv.org/abs/2003.10529
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