Symmetry-forced rigidity in the plane

Daniel Irving Bernstein

Massachusetts Institute of Technology and The Fields Institute (next year Tulane)

Website:

https://dibernstein.github.io

Relevant preprint:

https://arxiv.org/abs/2003.10529

See also my guest post on the matroid union blog: http://matroidunion.org/?p=3675

Rigidity theory basics

Definition

A bar and joint framework in d dimensions consists of

- a graph G, and
- a function $p:V(G)\to \mathbb{R}^d$.

Such frameworks can be rigid or flexible.

Example

Let G be the graph on vertex set $V=\{1,2,3,4\}$ with edges $\{12,23,34,14\}$. Below we give three functions $p:V\to\mathbb{R}^2$. The first two frameworks are flexible and the third one is rigid.

$$p(4) \longrightarrow p(3)$$
 $p(4) \longrightarrow p(3)$ $p(4) \longrightarrow p(3)$ $p(4) \longrightarrow p(3)$ $p(1) \longrightarrow p(2)$

Generic rigidity

Let G be the graph on vertex set $\{1,2,3,4\}$ with all edges, aside from $\{1,3\}$. For generic $p:\{1,2,3,4\}\to\mathbb{R}^2$, the resulting framework is rigid.

Definition

A graph G is generically rigid in \mathbb{R}^d if for every generic $p:V\to\mathbb{R}^d$, the resulting framework is rigid. Such a graph is minimal if removing any edge destroys this property.

We will soon see that generically rigid graphs in \mathbb{R}^d are the spanning sets of a certain matroid.

Classical results

Question

Which graphs are (minimally) generically rigid in \mathbb{R}^d ?

Proposition (Folklore)

A graph is generically rigid in \mathbb{R}^1 if and only if it is connected.

Theorem (Pollaczek-Geiringer 1927, "Laman's Theorem")

A graph G is minimally generically rigid in \mathbb{R}^2 if and only if

- |E(G)| = 2|V(G)| 3, and
- $|E(G')| \le 2|V(G')| 3$ for all subgraphs G' of G.

Generic rigidity in 3 dimensions remains an open problem.

Symmetry-forced rigidity

Frameworks appearing in many applications have forced symmetry. Symmetry-forced rigidity ignores flexes that break the symmetry.

Main problem: Characterize generic symmetry-forced rigidity in \mathbb{R}^d .

Gain graphs

Definition

Given a group S, a graph G has S-symmetry if there exists a free action of S on V(G) such that the action of each element of S is a graph isomorphism of G.

Symmetric frameworks can be compactly represented with gain graphs.

Definition

Given a group S, an S-gain graph is a directed multigraph G whose arcs are labeled by elements of S.

A is a rotation 90° counterclockwise.

$$\mathcal{S} = \{I, A, A^2, A^3\}$$

History of symmetry-forced rigidity

Main problem: For each d and each subgroup S of Euclidean isometries of \mathbb{R}^d , characterize the S-gain graphs that are minimally generically rigid

- Mathematical foundations: Schulze and Whiteley 2010, Borcea and Streinu 2010
- Combinatorial characterizations:
 - Two-dimensional (flexible) lattices Malestein and Theran 2013; Ross 2015
 - Three-dimensional lattices for body-bar frameworks Ross 2015
 - All rotation groups and odd dihedral groups Malestein and Theran 2014; Jordán, Kaszanitzky, and Tanigawa 2016
 - Wallpaper groups with flexible lattices Malestein and Theran 2015

This talk: tropical geometry, submodular functions, and matroid lifts to unify and generalize many aspects of the characterizations above

Balanced cycles

Definition

The gain of a walk W in a gain graph G is the product of the labels in W, inverting when an arc is traversed backwards. A balanced cycle is a cycle whose gain is the identity.

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

$$S = \{I, A, A^2, A^3, R, RA, RA^2, RA^3\}$$

$$R = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

Balancedness of a cycle not affected by:

- reversing an edge and inverting its label
- starting at a different vertex

Dutch bicycles and complete gain graphs

Definition

A bicyclic graph is a subdivision of one of the following graphs:

A bicyclic gain graph is *Dutch* if each pair of closed walks based at the same vertex have gains that commute.

Definition

Given a group \mathcal{S} , the complete gain graph $K_n(\mathcal{S})$ has vertex set $\{1,\ldots,n\}$ and $|\mathcal{S}|$ arcs from i to j when i < j and $|\mathcal{S}| - 1$ loops at each vertex. Each non-loop edge between i and j is labeled by a distinct element of \mathcal{S} and each loop edge is labeled by a distinct non-identity element of \mathcal{S} .

$$\mathcal{K}_2(\mathbb{Z}_2) = 1$$
 1

The main theorem

Theorem (DIB 2021)

Let $\mathcal S$ be a subgroup of $\mathbb R^2 \rtimes SO(2)$. For each $\mathcal S$ -gain graph H, define

$$\alpha(H) = \begin{cases} 3 & \text{if every cycle in } H \text{ is balanced} \\ 2 & \text{if not, and the gain of each cycle is a translation} \\ 1 & \text{if none of the above, and all bicyclic subgraphs are Dutch} \\ 0 & \text{otherwise.} \end{cases}$$

Then G is minimally generically infinitesimally rigid in \mathbb{R}^2 if and only if

$$|E(G)| = 2|V(G)| - \alpha(K_{|V(G)|}(S))$$

and for all subgraphs G' of G,

$$|E(G')| \leq 2|V(G')| - \alpha(G').$$

To do next: extend proof technique to accommodate reflections

Example

Recall that composition in $\mathbb{R}^2 \rtimes SO(2)$ is given by $(b_1,A_1)(b_2,A_2)=(b_1+A_1b_2,A_1A_2)$.

Outline of proof

- S-symmetry forced rigid graphs are spanning sets in algebraic matroid of S-symmetric Cayley-Menger variety
- When $S \subseteq \mathbb{R}^2 \rtimes SO(2)$, this is a Hadamard product of affine spaces
- Each affine space defines two matroids, one which is an elementary lift of the other
- Describe the algebraic matroid of a Hadamard product of affine spaces in terms of these two matroids for each (proof uses tropical geometry)
- Apply to our setting involves a particular lift of the gain graphic matroid of a complete gain graph

Algebraic matroids

Each subset $S \subseteq E$ defines a coordinate projection $\pi_S : \mathbb{C}^E \to \mathbb{C}^S$.

Definition

Let $V \subseteq \mathbb{C}^E$ be an irreducible variety. A given $S \subseteq E$ is

- **1** independent if $\dim(\pi_S(V)) = |S|$,
- 2 spanning if $\dim(\pi_S(V)) = \dim(V)$, and
- \odot a basis if S is both independent and spanning.

The common combinatorial structure described by any one of these set systems is called the *algebraic matroid underlying* V.

Let $E = \{1, 2, 3\} \times \{1, 2, 3\}$ and $V \subseteq \mathbb{C}^E$ be the variety of 3×3 matrices of rank ≤ 1 . Then $S := \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 3)\}$ is spanning, but not independent.

$$\pi_{\mathcal{S}}(V) = \left\{ \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & \cdot \\ \cdot & \cdot & x_{33} \end{pmatrix} : x_{11}x_{22} - x_{21}x_{22} = 0 \right\}$$

Algebraic matroids in rigidity theory

Definition

Given a pair of integers $d \leq n$, the Cayley-Menger variety of n points in \mathbb{R}^d , denoted CM_n^d , is the affine variety embedded in $\mathbb{C}^{\binom{[n]}{2}}$ as the Zariski closure of the set of possible squared pairwise euclidean distances between n points in \mathbb{R}^d .

Example

Let d = 2. Then the ij coordinate of CM_n^2 is parameterized as $d_{ij} = (x_i - x_j)^2 + (y_i - y_j)^2$.

Observation

A graph G = ([n], E) is generically rigid in \mathbb{R}^d if and only if E is spanning in CM_n^d . Moreover, G is minimally generically rigid if and only if E is a basis of CM_n^d .

Matroids

Definition

A matroid is a pair $\mathcal{M}=(E,\mathcal{I})$ where E is a set and $\mathcal{I}\subseteq 2^E$ satisfies

- $oldsymbol{0}$ \mathcal{I} is nonempty,
- ② if $I \in \mathcal{I}$ and $J \subseteq I$, then $J \in \mathcal{I}$, and
- **③** if $I, J ∈ \mathcal{I}$ with |I| = |J| + 1, then there exists e ∈ I such that $J ∪ \{e\} ∈ \mathcal{I}$.

Elements of \mathcal{I} are called the *independent sets of* \mathcal{M} .

Definition

The rank function $r_{\mathcal{M}}: 2^E \to \mathbb{Z}_{\geq 0}$ of a matroid $\mathcal{M} = (E, \mathcal{I})$ maps $S \subseteq E$ to |I| where I is the largest independent subset of S.

Definition

A spanning set of $\mathcal{M}=(E,\mathcal{I})$ is a set $S\subseteq E$ of maximum rank. A basis is a spanning independent set.

Matroids from submodular functions

Definition (Edmonds 1970)

Let $f: 2^E \to \mathbb{Z}$ be increasing and submodular, i.e. satisfies

- $f(A) \leq f(B)$ whenever $A \subseteq B \subseteq E$
- $(A \cup B) + f(A \cap B) \leq f(A) + f(B).$

Define $\mathcal{M}(f)$ to be the matroid on E where $I \subseteq E$ is independent iff for all $I' \subseteq I$, $I' = \emptyset$ or $|I'| \le f(I')$.

Example (Pym and Perfect 1970)

If r_1, \ldots, r_d are rank functions of matroids M_1, \ldots, M_d on ground set E, then I is independent in $\mathcal{M}(r_1 + \cdots + r_d)$ iff $I = I_1 \cup \cdots \cup I_d$ where I_j is independent in M_i .

Hadamard product of varieties

Definition

The Hadamard product $u \star v$ of $u, v \in \mathbb{F}^E$ is $(u_e v_e)_{e \in E}$. The Hadamard product of varieties U, V is the Zariski closure of $\{u \star v : u \in U, v \in V\}$.

Theorem (DIB 2021)

Let $U, V \subseteq \mathbb{C}^E$ be linear spaces. Then $\mathcal{M}(U \star V) = \mathcal{M}(r_{\mathcal{M}(U)} + r_{\mathcal{M}(V)} - 1)$.

Proposition

 $CM_n^2 = U \star U$ where U is the linear space spanned by the incidence matrix of the complete graph on n vertices.

Corollary (Lovász and Yemini 1982)

Let r be the rank function of the graphic matroid underlying K_n . Then $\mathcal{M}(2r-1)$ is the algebraic matroid underlying CM_n^2 .

Symmetric Cayley-Menger varieties

- ullet ${\cal S}$ is a group of Euclidean isometries of \mathbb{R}^d
- $\mathbb{F}^{K_n(S)}$ denotes the \mathbb{F} -vector space with coordinates indexed by the arcs of $K_n(S)$
- Define $d: (\mathbb{R}^d)^n \to \mathbb{R}^{K_n(S)}$ by $d(z)_e := \|z_{\mathrm{source}(e)} \mathrm{gain}(e)z_{\mathrm{target}(e)}\|_2^2.$
- CM_n^S is the Zariski closure of the image of d
- ullet S-gain graph G is generically infinitesimally rigid iff spanning in $\mathit{CM}_n^\mathcal{S}$

$$A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \qquad S = \{A, I\} \qquad A \qquad A$$

$$d(x_1, y_1, x_2, y_2) = \begin{pmatrix} 4x_1^2 + 4y_1^2, & (x_1 - x_2)^2 + (y_1 - y_2)^2, \\ (x_1 + x_2)^2 + (y_1 + y_2)^2, & 4x_2^2 + 4y_2^2 \end{pmatrix}$$

Translations and rotations

d=2 and S is a subgroup of $\mathbb{R}^2 \rtimes SO(2)$. If arc e of $K_n(S)$ has gain

$$\left(\begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}\right)$$

then under the following change of parameters

$$x_{v} \mapsto \frac{x_{v} + y_{v}}{2} \qquad y_{v} \mapsto \frac{x_{v} - y_{v}}{2i}$$

the entry of CM_n^S corresponding to e is

$$(x_{\text{source}(e)} - e^{i\theta}x_{\text{target}(e)} - a - bi)(y_{\text{source}(e)} - e^{-i\theta}y_{\text{target}(e)} - a + bi)$$

and so CM_n^S is a Hadamard product of affine spaces.

This part gets more complicated, though not hopeless, when ${\cal S}$ has reflections.

Algebraic matroid of a Hadamard product of affine spaces

Let $V = \{Ax + b : x \in \mathbb{C}^d\} \subseteq \mathbb{C}^E$ be an affine space.

- the algebraic matroid $\mathcal{M}(V)$ of V is the row matroid of A
- define $\mathcal{M}^L(V)$ to be the row matroid of $(A\ b)$
- $\mathcal{M}^L(V)$ is an elementary lift of $\mathcal{M}(V)$
- ullet $I\subseteq E$ is independent in $\mathcal{M}(V)$ implies I independent in $\mathcal{M}^L(V)$

Theorem (DIB 2021)

Let $U,V\subseteq\mathbb{C}^E$ be finite-dimensional affine spaces and define $f:2^E\to\mathbb{Z}$ by

$$f(S) = \begin{cases} r_{\mathcal{M}(U)}(S) + r_{\mathcal{M}(V)}(S) & \text{if } r_{\mathcal{M}(U)}(S) < r_{\mathcal{M}^{L}(U)}(S) \\ & \text{or } r_{\mathcal{M}(V)}(S) < r_{\mathcal{M}^{L}(V)}(S) \\ r_{\mathcal{M}(U)}(S) + r_{\mathcal{M}(V)}(S) - 1 & \text{otherwise.} \end{cases}$$

Then $\mathcal{M}(U \star V) = \mathcal{M}(f)$.

Gain graphic matroids

Definition

The gain-graphic matroid of a gain graph G is the matroid supported on the arc set of G whose independent sets are sets of arcs such that each connected component has at most one cycle, which is not balanced.

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \qquad \mathcal{S} = \{I, A, A^2, A^3\}$$

Example

In the above gain graph, adding the loop to any spanning tree produces a basis of the underlying gain-graphic matroid.

Putting it all together

If $S \subseteq \mathbb{R}^2 \rtimes SO(2)$, $CM_n^S = U \star V$ where U, V are affine spaces satisfying

- $\mathcal{M}(U) = \mathcal{M}(V)$ is the gain-graphic matroid of the gain graph obtained from $K_n(S)$ by ignoring the translation part of each gain
- $\mathcal{M}^L(U) = \mathcal{M}^L(V)$ is obtained from the gain graph of $K_n(S)$ by making non-Dutch bicyclic subgraphs independent

Theorem (DIB 2021)

Let S be a subgroup of $\mathbb{R}^2 \rtimes SO(2)$. For each S-gain graph H, define

$$\alpha(H) = \begin{cases} 3 & \text{if every cycle in } H \text{ is balanced} \\ 2 & \text{if not, and the gain of each cycle is a translation} \\ 1 & \text{if none of the above, and all bicyclic subgraphs are Dutch} \\ 0 & \text{otherwise.} \end{cases}$$

Then G is independent in $\mathcal{M}(CM_n^S)$ if and only if $|E(G')| \leq 2|V(G')| - \alpha(G')$ for all subgraphs G' of G.

The end

Thank you for your attention!

https://arxiv.org/abs/2003.10529