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1. Motivation

Many questions in applied algebraic geometry boil down to asking which polynomial
functions within some family are generically finite-to-one. When the family consists of
the coordinate projections of an irreducible variety, matroids arise. Two particular ap-
plications that have driven much research include matrix completion and rigidity theory.
The ground sets of the matroids that appear therein are the edge sets of graphs.

1.1. Low-rank matrix completion. In a low-rank matrix completion problem, one is
given access to a subset of entries of a matrix, and hopes to fill in the missing entries in a
way that minimizes rank, or that achieves a particular low rank. For example, given any
partial matrix of the following form (

a b
c ·

)
,

one can fill in the missing entry so that the resulting matrix has rank one. Namely, plug
in bc

a
. Of course, this won’t work if a = 0, but we can safely ignore this issue, and similar

ones, by working over C and invoking a genericity assumption on the visible entries. In
this setup, whether or not a particular partial matrix can be completed to a particular
rank r depends only on which entries are observed, and not their actual values. Thus,
one can ask: given an integer r ≥ 1 and a subset E of entries of an m×n matrix – which
is naturally encoded by the bipartite graph ([m], [n], E), see Figure 1 – can the resulting
partial matrices be completed to rank r? The subsets of entries, i.e. bipartite graphs,
for which the answer to this question is “yes” form the independent sets of a matroid.
When r = 1, this is the graphic matroid of the complete bipartite graph. When r = 2,
the independent sets of this matroid consist of all bipartite graphs that admit an edge
two-coloring with no monochromatic cycle, nor any cycle whose edge colors alternate.
More on this later. a · b

c d ·
· e f
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Figure 1. The subset of known entries of the matrix to the left correspond
to the graph on the right. If a, b, c, d, e, f are sufficiently generic, then the
partial matrix can be completed to rank two, but not rank one.
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1.2. Rigidity theory. If one were to physically build a graph G in d-dimensional space,
using rigid struts for the edges, and universal joints for the vertices (i.e. joints that the
struts can move freely around) would the resulting structure be rigid, or flexible? Con-
sider, for example, the four-cycle. If we build it in the plane as a square, then the resulting
structure is flexible, since we can deform the square into a rhombus without stretching,
compressing, or breaking any of the edges – see Figure 2. However, if we add a chord to
the four-cycle, then it becomes rigid in the plane.

→

Figure 2. The four-cycle is not rigid in the plane, but becomes rigid after
adding a chord.

Whether or not a graph is rigid in d-dimensional space depends not only on the combi-
natorics of the graph, but also on the specific positions we place the vertices. For example,
we can build the four-cycle in the plane so that it becomes rigid by placing all four ver-
tices on a line. However, just as in the matrix completion example, we can safely ignore
such issues by invoking a genericity assumption. Then, every graph will either be rigid
or flexible in d-dimensional space, and we can ask to characterize those that are rigid.
Moreover, the graphs on a fixed number of vertices that are rigid in d-dimensional space
form the spanning sets of a matroid. When d = 1, this is the graphic matroid of the
complete graph (see if you can convince yourself of this). When d = 2, the independent
sets of this matroid consist of graphs such that every subgraph on k vertices has at most
2k − 3 edges. More on this later.

2. Defining the relevant matroids

We will now describe how the two aforementioned matroids arise from the same con-
struction from algebraic geometry.

2.1. Matroids from irreducible varieties. A variety will refer to a subset of a finite-
dimensional vector space that is defined by the simultaneous vanishing of a system of
polynomial equations. We will be particularly concerned with irreducible varieties, which
are varieties that cannot be expressed as a union of two proper subsets which are them-
selves varieties.

Let E be a finite set, let F be a field, and let FE denote the F-vector space whose
coordinates are indexed by elements of E. Each subset S ⊆ E defines a coordinate
projection πS : FE → FS. Given a variety V , the dimension of the image of V under these
coordinate projections gives us an integer valued set function

ρV : 2E → N given by S 7→ dim(πS(V )).

I claim that when V is irreducible, ρV is the rank function of a matroid. This matroid
will be denoted by M(V ), and it is known as the algebraic matroid of V .



MATROIDS ON GRAPHS IN APPLIED ALGEBRAIC GEOMETRY 3

I will briefly explain why M(V ) is a matroid when V is irreducible in the case that
F is an uncountable field of characteristic zero (e.g. R or C). First consider the case
that V is a linear space. Then, V is an irreducible variety that can be obtained as the
row-span of some matrix A whose columns are indexed by E. Letting AS denote the
column-submatrix of A obtained by restricting to the columns indexed by S ⊆ E, we see
that πS(V ) is the row-span of AS and thus ρV (S) = dim(πS(V )) = rank(AS). So ρV is the
rank function of the column-matroid of A. If V is an arbitrary irreducible variety, then
since F is an uncountable field of characteristic zero, it follows from some basic algebraic
geometry that ρV = ρL where L is the tangent space to V at a generic1 point. Translating
L so that it contains the origin gives us a linear space L′ such that ρL = ρL′ . It now
follows from the linear case that ρV is the rank function of a matroid. Note that our proof
implies that any matroid of the formM(V ) is representable over F when F is uncountable
of characteristic zero (this is no longer true for Q nor fields of prime characteristic [4]).

Some readers might be more familiar with a seemingly different definition of algebraic
matroid. Namely, if K is a field extension of F and E ⊆ K is finite, then the subsets of
E that are algebraically independent over F form the independent subsets of a matroid.
Matroids arising in this way are said to be algebraic matroids (over F). There is no
conflict in terminology here, and this stems from the fact that for any variety W ⊆ Fk,
the dimension of W is defined to be the transcendence degree over F of the fraction field
of F[x1, . . . , xk]/I, where I is the ideal of polynomials that vanish on W . When F = R or
C, this definition is equivalent to the more intuitive notion of dimension from manifold
theory, i.e. the dimension of a tangent space at a smooth point (and I will not discuss this
further since the proof is quite deep, and requires a good bit of commutative algebra).

2.2. Determinantal varieties. Let M(m×n, r) ⊆ Cm×n denote the set of m×n complex
matrices of rank at most r. Since a matrix has rank r or less if and only if all (r+1)×(r+1)
submatrices have zero determinant, M(m × n, r) is a variety. Moreover, it is irreducible
so we can talk about its algebraic matroid. The ground set of this matroid is the set of
entries of an m× n matrix, which we identify with the edge set of the complete bipartite
graph Km,n. Subsets of the ground set can therefore be described as bipartite graphs on
partite sets of size m and n.

Given a bipartite graph G, let CG denote the vector space whose coordinates are in-
dexed by edges of G, and let ΩG : Cm×n → CG be the map that projects a matrix M
onto its entries corresponding to the edges of G. Elements of CG are called G-partial
matrices. Given a G-partial matrix A, elements of Ω−1G (A) are called completions of A.
A fundamental problem in low-rank matrix completion is to determine whether a given
partial matrix A ∈ CG has a completion to a particular rank. The following proposition

1When applied algebraic geometers say “property P is satisfied by a generic point of V ,” it means
that the set of points in V where P is not satisfied is contained in a subvariety of V . We use the word
“generic” to avoid explicitly writing down what that variety is. When V is irreducible, any subvariety of
V has lower dimension than V . Therefore, when F = C or R, if V is irreducible and a generic point of
V satisfies property P , then a point randomly sampled from V with respect to a reasonable probability
distribution will satisfy P with probability one.
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tells us that assuming A is generic, whether or not A can be completed to rank r depends
only on G.

Proposition 1. Let G = ([m], [n], E) be a bipartite graph and let A ∈ CG be a G-partial
matrix. If A is generic, then A has a completion to rank r if and only if G is independent
in the algebraic matroid M(M(m× n, r)).

Proof. Given any irreducible variety V ⊆ CE, S ⊆ E is independent inM(V ) if and only
if dim(πS(V )) = |S|. This means that the set {x ∈ CS : x /∈ πS(V )} is contained in a
subvariety of CS, and in particular, has dimension strictly less than |S|. Thus given any
generic x ∈ CS, there exists y ∈ V such that πS(y) = x. The proposition is now the
special case where V = M(m× n, r). �

Proposition 1 now motivates the following general problem.

Problem 1. For each r, give a combinatorial description of the (independent sets of the)
matroid M(M(m× n, r)).

Problem 1 is open in all cases other than r = 1 and r = 2. For r = 1, it is relatively
easy to show that M(M(m× n, 1)) is the graphic matroid of Km,n; we do this below.

Proposition 2. The matroid M(M(m× n, 1)) is the graphic matroid of Km,n. In other
words, a bipartite graph G = ([m], [n], E) is independent in M(M(m× n, 1)) if and only
if Gis a forest.

Proof. Assume G has no cycles. Let X be a generic G-partial matrix. By Proposition 1,
it suffices to show that X can be completed to a rank-one matrix. Let G′ be obtained
from G by removing a vertex of degree zero or one; without loss of generality, assume it
was the row-vertex m. Let X ′ be the G′-partial matrix obtained from X by removing the
last row. By induction, X ′ can be completed to a rank-one matrix Y . If the degree of m
was zero, then we can further complete X to a rank-one matrix by plugging in zeros for
the entries in the last row. If the degree of m was 1, then assuming the unique known
entry of the mth row of X is in the first column, then multiply the (m− 1)th row of Y by
Xm,1/Ym−1,1 and adjoining it to Y gives a rank-one completion of X.

Now assume G has a cycle x1, x2, . . . , x2k (G is bipartite, so the cycle must have even
length). Then πG(M(m×n, 1)) must satisfy the equation x1x3 · · · x2k−1 = x2x4 · · ·x2k. In
particular, πG(M(m× n, 1)) has dimension less than the number of edges of G. �

The characterization of M(M(m × n, 2)) is more complicated. I will state it below;
the interested reader is invited to read my paper [1] for the proof, which uses tropical
geometry.

Theorem 3 ([1, Theorem 4.4]). Let G = ([m], [n], E) be a bipartite graph. Then G is
independent in M(M(m× n, 2)) if and only if there exists a two-coloring of the edges of
G with no monochromatic cycle, and no cycle whose edge-colors alternate.

2.3. Cayley-Menger varieties. Consider the function φd
n : (Rd)n → R(n

2) that sends
a configuration of n points in d-dimensional space to their vector of squared pairwise
distances. For example, if d = 2, this map would send the n points (x1, y1), . . . , (xn, yn)
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to the vector ((xi − xj)
2 + (yi − yj)

2)1≤i<j≤n. The image of φd
n is subset of R(n

2), and

taking its Zariski closure in C(n
2) (i.e. the smallest variety in C(n

2) containing it) yields
an irreducible variety CMd

n called the Cayley-Menger variety of n points in Rd (and yes,

this is the Menger of Menger’s theorem). We can identify the coordinate indices of C(n
2),

i.e. the ground set of the matroid M(CMd
n), with the edges of the complete graph Kn.

Proposition 4. A graph G is spanning in M(CMd
n) if and only if it is rigid in d-

dimensional space.

proof sketch. Given any varieties V and W and any polynomial map f : V → W , the
following relationship holds for generic x ∈ V

dim(V ) = dim(f(V )) + dim(f−1(f(x))).

When dim(V ) = dim(f(V )), this implies dim(f−1(f(x))) = 0 and since dim(f−1(f(x)) is
a variety, this is equivalent to dim(f−1(f(x)) being a finite set. In particular, if V ⊆ CE

then S ⊆ E is spanning inM(V ) if and only if π−1S (πS(x))∩V is a finite set. So it remains
to see that G is rigid if and only if π−1G (πG(x)) ∩ CMd

n is finite for generic x ∈ CMd
n.

We now need to be more formal in our definition of rigidity. Suppose we build a graph
G in Rd by putting the vertices at points p(1), . . . , p(n). A (nontrivial) flex of G is a curve
in the space of configuration of n points in Rd, i.e. a function p : [0, 1]→ (Rd)n, such that

(1) the curve starts at the original configuration, i.e. p(0) = (p(1), . . . , p(n))
(2) all configurations along the curve preserve the lengths of the edges of G, i.e. for

each t ∈ [0, 1] and edge {i, j} of G, ‖p(t)(i) − p(t)(j)‖2 = ‖p(0)(i) − p(0)(j)‖2, and
(3) somewhere along the curve, the framework on G actually gets deformed, i.e. for

some t ∈ [0, 1] and some non-edge {i, j} of G, ‖p(t)(i) − p(t)(j)‖2 6= ‖p(0)(i) −
p(0)(j)‖2.

This formalizes our intuitive notion of what it would mean to deform our particular
construction of a graph. A graph is then (generically) rigid if for any generic point
configuration p(1), . . . , p(n), the corresponding framework on G does not have any flex.

To see that the absence of a flex of G is equivalent to the statement that π−1G (πG(x))∩
CMd

n is generically finite, first note that if p : [0, 1] → (Rd)n is a curve satisfying the
second condition required for p to be a flex of G, then πG ◦ φd

n ◦ p([0, 1]) is a single
point y in πG(CMd

n), and π−1G (y) ∩ CMd
n contains φd

n ◦ p([0, 1]). The curve p additionally
satisfies the third condition if and only if φd

n ◦p([0, 1]) is one-dimensional, thus exhibiting
infinitely many points in π−1G (πG(x)) ∩ CMd

n for some x ∈ π−1G (y) ∩ CMd
n. Conversely,

since π−1G (πG(x))∩CMd
n is a variety, then if it has infinitely many points, it must contain

a curve. In this case, we can find such a curve that also lies in the image of φd
n (this is

me ignoring the issues that arise when passing from a semi-algebraic set to its complex
Zariski closure). Such a curve is a flex. �

Proposition 4 motivates the following general problem: for each d ≥ 1, find a combi-
natorial description of M(CMd

n), the algebraic matroid of the Cayley-Menger variety of
n points in d-dimensional space. For d ≥ 3, this problem is open, and has been for at
least a century. The d = 1 case is quite simple: M(CM1

n) is the graphic matroid of the
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complete graph Kn, and you might be able to see this intuitively. There are a handful of
characterizations for the d = 2 case; perhaps the most famous, and elegant, due to Hilda
Polaczek-Geiringer, is the following

Theorem 5 ([5]). A graph G is independent in M(CMd
n) if and only if every subgraph

of G on k vertices has at most 2k − 3 edges.

Theorem 5 is known as Laman’s theorem, based on the mistaken, but previously wide-
spread, belief that this result originated with Gerard Laman’s 1970 paper [3]. Recently
however, it was noticed that Hilda Pollaczek-Geiringer had actually proven this result
much earlier in 1927 [5].

3. Concluding remarks

Applied algebraic geometry is full of families of varieties whose algebraic matroids are
worth understanding. As in the two examples above, the ground set of each such matroid is
usually a graph, though sometimes the ground set is something slightly more complicated,
like a gain graph as in [2]. There are many open problems, as well as opportunities to
develop general theory that could be used to solve them.
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