Let G be a graph. $w : V(G) \to [0,1]$ is good if $\exists v \in V(G)$ such that $w(v) = 1$.

DEF For $c \in [\frac{1}{2}, 1)$ define a (w,c,d)-balanced separator in G is $S \subseteq V(G)$ s.t.

- $|S| \leq d$ and
- for every component D of $G \setminus S$
 - $\exists v \in D$ s.t. $w(v) \leq c$.

THM (Harvey & Wood) If $\exists c,d$ s.t. G has a (w,c,d)-separator for every good w, then $\text{tw}(G) \leq f(c,d)$.
Let \(y \leq 2^{|v(G)|} \) closed under taking subsets.

DEF For \(c \in \Sigma_{y,1}^1 \) a \((w,c,y)\)-balanced separator on \(G \) is \(s \in Y \) s.t. for every component \(D \) of \(G \setminus s \) we have \(\sum_{v \in D} w(v) \leq c. \)

QUESTION Assume \(\exists c \in \Sigma_{y,1}^1 \) s.t. \(G \) has a \((w,c,y)\)-balanced separator for every good \(w \).

Does \(G \) have a tree decomposition \((T, \mathcal{X})\) s.t. \(\forall t_1, t_2 \in V(T) \) with \(t_1 \neq t_2 \) we have \(x(t_1) \cap x(t_2) \in Y \)?