Open Problem:
Building blocks for foundations
Adjacent and equivalent $V_{2,4}$ - minors

2. $V_{2,4}$ - minors of M are adjacent if they are minors of a common N-Minor, with N one of:

$V_{2,4} \bigoplus U_0, 1$ or $V_{2,4} \bigoplus U_1, 1$ or $V_{2,4} \bigoplus 2V_{1,3}$ or $V_{2,4} \bigoplus 2U_{2,3}$.

They are equivalent if they are joined by a sequence of adjacent $V_{2,4}$ - minors.
Junction points:

A junction point of a matroid M is a $U_{2,4}$-minor given as the restriction of M to a modular flat.
Question: do these building blocks exist?

1. Matroid with 2 disjoint equivalent junction points, whose union is modular.
2. Matroid with 5 disjoint junction points, equivalent to the 5 $U_{2,4}$-minors of some $U_{2,5}$-minor.

Adjacent:
- Common $V_{2,4} \oplus V_{0,1}$ or $V_{2,6} \oplus V_{1,1}$
- Or $V_{2,4} \oplus V_{1,3}$ or $V_{2,4} \oplus V_{2,3}$

Equivalent:
- Joined by sequence of adjacent

Junction point:
- $V_{2,4}$ given as restriction to a modular flat.