Tangles are decided by weighted vertex sets

Jakob Kneip Universität Hamburg

joint work with Christian Elbracht and Maximilian Teegen

November 16, 2020

G = (V, E) a graph. A separation is a pair (A, B) of vertex sets with $A \cup B = V$ such that no edge of G has one endpoint in $A \smallsetminus B$ and one in $B \smallsetminus A$.

G = (V, E) a graph. A separation is a pair (A, B) of vertex sets with $A \cup B = V$ such that no edge of G has one endpoint in $A \smallsetminus B$ and one in $B \smallsetminus A$.

G = (V, E) a graph. A separation is a pair (A, B) of vertex sets with $A \cup B = V$ such that no edge of G has one endpoint in $A \smallsetminus B$ and one in $B \smallsetminus A$.

The *order* of a separation is the size of its separator $A \cap B$.

 ${\ensuremath{\:\ensuremath}\ensuremath{\lensuremath{\lensuremath{\lensuremath}\ensuremath{\le$

- $\hfill \tau$ contains exactly one of (A,B) and (B,A) for all (A,B) of order < k
- if τ contains $(A_1, B_1), (A_2, B_2)$ and (A_3, B_3) , then

 $G[A_1] \cup G[A_2] \cup G[A_3] \neq G.$

- $\bullet \ \tau$ contains exactly one of (A,B) and (B,A) for all (A,B) of order < k
- if τ contains $(A_1, B_1), (A_2, B_2)$ and (A_3, B_3) , then

 $G[A_1]\cup G[A_2]\cup G[A_3]\neq G.$

Motivation

A large cluster in a graph orients all the low order separations of a graph,

- $\hfill \tau$ contains exactly one of (A,B) and (B,A) for all (A,B) of order < k
- if τ contains $(A_1, B_1), (A_2, B_2)$ and (A_3, B_3) , then

 $G[A_1]\cup G[A_2]\cup G[A_3]\neq G.$

Motivation

A large cluster in a graph *orients* all the low order separations of a graph, the second condition (*tangle property*) ensures that we point to something substantial.

Examples

Examples

Examples

there is a $\mathit{decider set}\ X \subseteq V$ such that for every separation (A,B) of order < k we have

 $(A,B) \in \tau$ if and only if $|B \cap X| > |A \cap X|$.

there is a $\mathit{decider set}\ X \subseteq V$ such that for every separation (A,B) of order < k we have

 $(A, B) \in \tau$ if and only if $|B \cap X| > |A \cap X|$.

Do we always have such a decider set?

there is a $\mathit{decider set}\ X \subseteq V$ such that for every separation (A,B) of order < k we have

 $(A, B) \in \tau$ if and only if $|B \cap X| > |A \cap X|$.

Do we always have such a decider set? Maybe.

We can show that *weighted deciders* exist:

Theorem (Elbracht, K, Teegen, 2020)

Let G = (V, E) be a finite graph and τ a k-tangle in G. Then there exists a function $w \colon V \to \mathbb{N}$ such that a separation (A, B) of G of order < k lies in τ if and only if w(A) < w(B), where $w(U) := \sum_{u \in U} w(u)$ for $U \subseteq V$. We can show that *weighted deciders* exist:

Theorem (Elbracht, K, Teegen, 2020)

Let G = (V, E) be a finite graph and τ a k-tangle in G. Then there exists a function $w \colon V \to \mathbb{N}$ such that a separation (A, B) of G of order < k lies in τ if and only if w(A) < w(B), where $w(U) := \sum_{u \in U} w(u)$ for $U \subseteq V$.

How did we prove this?

First observation

The separations come with a natural partial order:

First observation

The separations come with a natural partial order:

It suffices to find a weighted decider for the maximal separations of a k-tangle w.r.t. this partial order.

Second observation

Let (A, B) and (C, D) be two distinct maximal separations in a k-tangle. Consider the separators $A \cap B$ and $C \cap D$.

Second observation

Let (A, B) and (C, D) be two distinct maximal separations in a k-tangle. Consider the *separators* $A \cap B$ and $C \cap D$.

The separation $(A \cup C, B \cap D)$ cannot be of order < k.

Second observation

Let (A, B) and (C, D) be two distinct maximal separations in a k-tangle. Consider the *separators* $A \cap B$ and $C \cap D$.

The separation $(A \cup C, B \cap D)$ cannot be of order < k.

Taken together, the separator vertices are 'more often right than wrong':

 $(|B \cap (C \cap D)| + |D \cap (A \cap B)|) - (|A \cap (C \cap D)| + |C \cap (A \cap B)|) > 0$

Idea: Find a weighting of the separators, and derive the weighting of the vertices from it.

Idea: Find a weighting of the separators, and derive the weighting of the vertices from it.

We can phrase this problem as a linear program:

• Enumerate the maximal separations of τ as $(A_1, B_1), \ldots, (A_m, B_m)$.

Idea: Find a weighting of the separators, and derive the weighting of the vertices from it.

We can phrase this problem as a linear program:

- Enumerate the maximal separations of τ as $(A_1, B_1), \ldots, (A_m, B_m)$.
- Define an $m \times m$ matrix M where m_{ij} specifies how well $A_j \cap B_j$ decides (A_i, B_i) , by setting

We can phrase this problem as a linear program:

- Enumerate the maximal separations of τ as $(A_1, B_1), \ldots, (A_m, B_m)$.
- Define an $m \times m$ matrix M where m_{ij} specifies how well $A_j \cap B_j$ decides (A_i, B_i) , by setting

Now if x is a vector of weights for the separators, then

$$w(B_i) - w(A_i) = \sum_j m_{ij} \cdot x_j \,,$$

We can phrase this problem as a linear program:

- Enumerate the maximal separations of τ as $(A_1, B_1), \ldots, (A_m, B_m)$.
- Define an $m \times m$ matrix M where m_{ij} specifies how well $A_j \cap B_j$ decides (A_i, B_i) , by setting

Now if x is a vector of weights for the separators, then

$$w(B_i) - w(A_i) = \sum_j m_{ij} \cdot x_j \,,$$

so Mx is the vector of the 'net scores' of the (A_i, B_i) in the weighting x.

We need to find a weight vector $x \ge 0$ with Mx > 0.

Lemma (Farkas' Lemma)

Given A and b, either $Ax \ge b$ has a solution with $x \ge 0$, or there exists a $y \ge 0$ such that $A^T y \le 0$ and $b^T y > 0$.

Lemma (Farkas' Lemma)

Given A and b, either $Ax \ge b$ has a solution with $x \ge 0$, or there exists a $y \ge 0$ such that $A^T y \le 0$ and $b^T y > 0$.

Apply Farkas with A = M and $b = (1, ..., 1)^T$. Two possible outcomes:

Lemma (Farkas' Lemma)

Given A and b, either $Ax \ge b$ has a solution with $x \ge 0$, or there exists a $y \ge 0$ such that $A^T y \le 0$ and $b^T y > 0$.

Apply Farkas with A = M and $b = (1, ..., 1)^T$. Two possible outcomes:

• there is $x \ge 0$ with $Mx \ge (1, \ldots, 1)^T > 0$.

Lemma (Farkas' Lemma)

Given A and b, either $Ax \ge b$ has a solution with $x \ge 0$, or there exists a $y \ge 0$ such that $A^T y \le 0$ and $b^T y > 0$.

Apply Farkas with A = M and $b = (1, ..., 1)^T$. Two possible outcomes:

- there is $x \ge 0$ with $Mx \ge (1, \ldots, 1)^T > 0$.
- there is $y \ge 0$ with $M^T y \le 0$ and $y \ne 0$.

Lemma (Farkas' Lemma)

Given A and b, either $Ax \ge b$ has a solution with $x \ge 0$, or there exists a $y \ge 0$ such that $A^T y \le 0$ and $b^T y > 0$.

Apply Farkas with A = M and $b = (1, ..., 1)^T$. Two possible outcomes:

- there is $x \ge 0$ with $Mx \ge (1, \dots, 1)^T > 0$.
- there is $y \ge 0$ with $M^T y \le 0$ and $y \ne 0$. But then

$$0 \leqslant (M + M^T) y \leqslant M y \,.$$

Theorem (Elbracht, K, Teegen, 2020)

Let G = (V, E) be a finite graph and τ a k-tangle in G. Then there exists a function $w \colon V \to \mathbb{N}$ such that a separation (A, B) of G of order < k lies in τ if and only if w(A) < w(B), where $w(U) := \sum_{u \in U} w(u)$ for $U \subseteq V$.

Theorem (Elbracht, K, Teegen, 2020)

Let G = (V, E) be a finite graph and τ a k-tangle in G. Then there exists a function $w \colon V \to \mathbb{N}$ such that a separation (A, B) of G of order < k lies in τ if and only if w(A) < w(B), where $w(U) := \sum_{u \in U} w(u)$ for $U \subseteq V$.

We never made use of the graph's edges, so the same result holds for k-tangles of hypergraphs.

Similar to tangles, we can define *k*-edge-tangles of a graph G = (V, E):

A *k*-edge-tangle is a set τ of cuts of order < k such that:

For every cut (A, B) of order < k either (A, B) or (B, A) is in τ .

A *k*-edge-tangle is a set τ of cuts of order < k such that:

- For every cut (A, B) of order < k either (A, B) or (B, A) is in τ .
- If τ contains (A_1, B_1) , (A_2, B_2) and (A_3, B_3) then

 $A_1 \cup A_2 \cup A_3 \neq V.$

A *k*-edge-tangle is a set τ of cuts of order < k such that:

- For every cut (A, B) of order < k either (A, B) or (B, A) is in τ .
- If τ contains (A_1, B_1) , (A_2, B_2) and (A_3, B_3) then

 $A_1 \cup A_2 \cup A_3 \neq V.$

■ For every (A, B) in τ there are at least k edges incident with vertices in B.

Theorem (Elbracht, K, Teegen, 2020)

Let G = (V, E) be a finite (multi-)graph and τ a k-edge-tangle in G. Then there exists a function $w: V \to \mathbb{N}$ such that a cut (A, B) of G of order < k lies in τ if and only if w(A) < w(B).

Theorem (Elbracht, K, Teegen, 2020)

Let G = (V, E) be a finite (multi-)graph and τ a k-edge-tangle in G. Then there exists a function $w: V \to \mathbb{N}$ such that a cut (A, B) of G of order < k lies in τ if and only if w(A) < w(B).

The edge-tangle result does not extend to hypergraphs.

The edge-tangle result does not extend to hypergraphs. Consider the hypergraph H = (V, E) where

• V is the set of 3-element subsets of $\{1, \ldots, 7\}$;

The edge-tangle result does not extend to hypergraphs. Consider the hypergraph H = (V, E) where

- V is the set of 3-element subsets of $\{1, \ldots, 7\}$;
- for each $i \in \{1, \ldots, 7\}$ we have a hyperedge $e_i = \{v \in V \mid i \in v\}$.

The edge-tangle result does not extend to hypergraphs. Consider the hypergraph H = (V, E) where

- V is the set of 3-element subsets of $\{1, \ldots, 7\}$;
- for each $i \in \{1, \dots, 7\}$ we have a hyperedge $e_i = \{v \in V \mid i \in v\}$.

Consider the hypergraph H = (V, E) where

- V is the set of 3-element subsets of $\{1, \ldots, 7\}$;
- for each $i \in \{1, \dots, 7\}$ we have a hyperedge $e_i = \{v \in V \mid i \in v\}$.

In this hypergraph we have an edge-tangle

 $\tau := \{(A,B) \text{ of order} < 7 \mid B \supseteq e_i \text{ for some } e_i\}$.

Consider the hypergraph H = (V, E) where

- V is the set of 3-element subsets of $\{1, \ldots, 7\}$;
- for each $i \in \{1, \dots, 7\}$ we have a hyperedge $e_i = \{v \in V \mid i \in v\}$.

In this hypergraph we have an edge-tangle

$$\tau := \{ (A,B) \text{ of order} < 7 \mid B \supseteq e_i \text{ for some } e_i \} \ .$$

This edge tangle has no weighted decider: consider

$$\sum_{1 \leq i \leq 7} w(B_i) - w(A_i) \,.$$

End

Thank you!