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G = (V,E) a graph. A separation is a pair (A,B) of vertex sets
with A ∪B = V such that no edge of G has one endpoint in ArB and
one in B rA.
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A k-tangle is a set τ of separations of order < k such that:

τ contains exactly one of (A,B) and (B,A) for all (A,B) of order
< k

if τ contains (A1, B1), (A2, B2) and (A3, B3), then

G[A1] ∪G[A2] ∪G[A3] 6= G.

Motivation
A large cluster in a graph orients all the low order separations of a graph,
the second condition (tangle property) ensures that we point to
something substantial.
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cliques grids
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The tangles in these examples have a set of vertices which determines
their orientation by majority vote:

there is a decider set X ⊆ V such that for every separation (A,B) of
order < k we have

(A,B) ∈ τ if and only if |B ∩X| > |A ∩X|.

Do we always have such a decider set? Maybe.
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We can show that weighted deciders exist:

Theorem (Elbracht, K, Teegen, 2020)

Let G = (V,E) be a finite graph and τ a k-tangle in G.
Then there exists a function w : V → N such that a separation (A,B) of
G of order < k lies in τ if and only if w(A) < w(B),
where w(U) :=

∑
u∈U w(u) for U ⊆ V .

How did we prove this?
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First observation
The separations come with a natural partial order:

(A,B) 6 (C,D) :⇐⇒ A ⊆ C and B ⊇ D.

It suffices to find a weighted decider for the maximal separations
of a k-tangle w.r.t. this partial order.
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Second observation
Let (A,B) and (C,D) be two distinct maximal separations in a k-tangle.
Consider the separators A ∩B and C ∩D.

The separation (A ∪ C,B ∩D) cannot be of order < k.

Taken together, the separator vertices are ‘more often right than wrong’:

(|B ∩ (C ∩D)|+|D ∩ (A ∩B)|) − (|A ∩ (C ∩D)|+|C ∩ (A ∩B)|) > 0
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Idea: Find a weighting of the separators, and derive the weighting of the
vertices from it.

We can phrase this problem as a linear program:
Enumerate the maximal separations of τ as (A1, B1), . . . , (Am, Bm).
Define an m×m matrix M where mij specifies how well Aj ∩Bj

decides (Ai, Bi), by setting

mij := |Bi ∩ (Aj ∩Bj)| − |Ai ∩ (Aj ∩Bj)| .

Now if x is a vector of weights for the separators, then

w(Bi)− w(Ai) =
∑
j

mij · xj ,

so Mx is the vector of the ‘net scores’ of the (Ai, Bi) in the weighting x.
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We need to find a weight vector x > 0 with Mx > 0.

By the second observation we have mij +mji > 0, so M +MT has
positive off-diagonal entries.

Lemma (Farkas’ Lemma)

Given A and b, either Ax > b has a solution with x > 0,
or there exists a y > 0 such that AT y 6 0 and bT y > 0.

Apply Farkas with A =M and b = (1, . . . , 1)T . Two possible outcomes:

there is x > 0 with Mx > (1, . . . , 1)T > 0.

there is y > 0 with MT y 6 0 and y 6= 0. But then

0 6 (M +MT )y 6My .
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Theorem (Elbracht, K, Teegen, 2020)

Let G = (V,E) be a finite graph and τ a k-tangle in G.
Then there exists a function w : V → N such that a separation (A,B) of
G of order < k lies in τ if and only if w(A) < w(B),
where w(U) :=

∑
u∈U w(u) for U ⊆ V .

We never made use of the graph’s edges,
so the same result holds for k-tangles of hypergraphs.
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Similar to tangles, we can define k-edge-tangles of a graph G = (V,E):

For a cut (A,B), a bipartition of V , we define as order the number of
cross-edges |E(A,B)|.
A k-edge-tangle is a set τ of cuts of order < k such that:

For every cut (A,B) of order < k either (A,B) or (B,A) is in τ .

If τ contains (A1, B1),(A2, B2) and (A3, B3) then

A1 ∪A2 ∪A3 6= V.

For every (A,B) in τ there are at least k edges incident with
vertices in B.
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Theorem (Elbracht, K, Teegen, 2020)

Let G = (V,E) be a finite (multi-)graph and τ a k-edge-tangle in G.
Then there exists a function w : V → N such that a cut (A,B) of G of
order < k lies in τ if and only if w(A) < w(B).
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The edge-tangle result does not extend to hypergraphs.

Consider the hypergraph H = (V,E) where

V is the set of 3-element subsets of {1, . . . , 7};
for each i ∈ {1, . . . , 7} we have a hyperedge ei = {v ∈ V | i ∈ v}.

In this hypergraph we have an edge-tangle

τ := {(A,B) of order < 7 | B ⊇ ei for some ei} .

This edge tangle has no weighted decider: consider∑
16i67

w(Bi)− w(Ai) .
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End

Thank you!
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