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Introduction to matroids

Definition

A matroid M = (E ,B) consists of a finite set, E , and a non-empty
family, B, of subsets of E , satisfying:

I if B1,B2 ∈ B, and x ∈ B1 − B2, then there exists y ∈ B2 − B1

such that (B1 − x) ∪ y ∈ B.

E is called the ground set. Members of B are called bases.

Exercise

Bases have the same size.



Representable matroids

Matroids arise from linear (in)dependence.

Let A be a matrix with entries from the field F. Let E be the set of
columns, and let B = {B ⊆ E : B is a basis of the column-space}.
Then M[A] = (E ,B) is an F-representable matroid.

Example (F = GF(2))
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A matroid is representable if it is F-representable for some field F.



Whitney’s problem

A significant fraction of matroid research has been inspired by a
problem posed by Hassler Whitney in 1935. The problem appears
on the first page of the first paper to use the word “matroid”.
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Matroid minors

Let M = (E ,B) be a matroid, and let e be an element of E .

Definition

M\e is produced from M by deleting e.

M\e = (E − e, {B : B ∈ B, e /∈ B})

(if at least one B ∈ B does not contain e).

M/e is produced from M by contracting e.

M/e = (E − e, {B − e : B ∈ B, e ∈ B})

(if at least one B ∈ B contains e).

A minor of M is produced by a (possibly empty) sequence of
deletions and contractions.



Excluded minors

Definition

Let M be a class of matroids. M is minor-closed if any minor of
any matroid in M is also in M.

Proposition

Let F be a field. The class of F-representable matroids is closed
under minors.

Definition

Let M be a minor-closed class of matroids. The matroid
M = (E ,B) is an excluded minor for M if M /∈M, but M\e ∈M
and M/e ∈M for all e ∈ E .

Exercise

Let M be a minor-closed class. A matroid is contained in M if
and only if it does not contain an excluded minor (as a minor).
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Excluded minors

These results mean that we can characterize the class of
F-representable matroids by giving a list of excluded minors.



Existing excluded-minor theorems

Theorem (Tutte — 1958)

The only excluded minor for the class of GF(2)-representable
matroids is U2,4.

U2,4



Existing excluded-minor theorems

Theorem (Bixby / Seymour — 1979)

The excluded minors for the class of GF(3)-representable matroids
are U2,5, U3,5, F7, and F ∗7 .

U2,5 F7



Existing excluded-minor theorems

Theorem (Geelen, Gerards, Kapoor — 2000)

The excluded minors for the class of GF(4)-representable matroids
are U2,6, U4,6, P6, F−7 , (F−7 )∗, P8, and P ′′8 .

F−
7U2,6 P6 P8



Existing excluded-minor theorems

Theorem (Tutte — 1958)

The excluded minors for GF(2)- and GF(3)-representable matroids
are U2,4, F7, and F ∗7 .

Theorem (Geelen, Gerards, Kapoor — 2000)

The excluded minors for GF(3)- and GF(4)-representable matroids
are U2,5, U3,5, F7, F ∗7 , F−7 , (F−7 )∗, and P8.

Theorem (Geelen / Hall, Mayhew, Van Zwam — 2010)

The excluded minors for GF(3)-, GF(4)-, and GF(5)-representable
matroids are U2,5, U3,5, F7, (F7)∗, F−7 , (F−7 )∗, P8, AG(2, 3)\e,
(AG(2, 3)\e)∗, and ∆T (AG(2, 3)\e).



Future excluded-minor theorems?

Ongoing projects (Mayhew, Whittle, Van Zwam, and others).

Project

Find the excluded minors for the class of H5-representable
matroids.

This is the first step in...

Project

Find the excluded minors for the classes of H5, H4, H3, H2, H1

representable matroids.

Success in this project would mean we have found the excluded
minors for the class of GF(5)-representable matroids.

We already know of 570! (! = exclamation, not factorial)

564 found by Royle, 4 found by Kingan, 2 found by Pendavingh.
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Future excluded-minor theorems?

Conjecture

The excluded minors for GF(3)- and GF(5)-representable matroids
are U2,5, U3,5, F7, F ∗7 , AG(2, 3)\e, (AG(2, 3)\e)∗,
∆T (AG(2, 3)\e), T8, N1, and N2.

This is a necessary step towards finding the excluded minors for
GF(5)-representability.



Rota’s conjecture

The most famous problem in matroid theory...

Rota’s conjecture (1971)

If F is a finite field, then there are finitely many excluded minors
for F-representability.

... has just been solved.

Theorem (Geelen, Gerards, Whittle — announced 2013)

Rota’s conjecture holds.
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Whitney’s problem

The classical approach to Whitney’s problem has involved excluded
minors.

Another approach uses model theory — the theory of formal
languages.



Matroid axioms

Let M = (E ,B) be a matroid.

A subset X ⊆ E is independent in M if X ⊆ B for some B ∈ B.

Let E be a finite set, let I ⊆ 2E be a collection of subsets. Then I
is the collection of independent sets of a matroid if and only if:

I1. I 6= ∅
I2. I ∈ I and I ′ ⊆ I implies I ′ ∈ I
I3. If I and I ′ are maximal subsets in I, and x ∈ I − I ′, then there

exists y ∈ I ′− I such that (I − x)∪ y is a maximal subset in I.

Can we add finitely many sentences to this list of axioms in such a
way that we characterize representable matroids (using the same
logical language)?



Vámos’s Theorem

Vámos wrote a paper entitled ‘The missing axiom of matroid
theory is lost forever’.

Theorem (Vámos — 1978)

Representable V -matroids cannot be characterized by adding a
single sentence in V -logic to the (infinite) list of V -matroid axioms.

This does not resolve Whitney’s question, as Vámos’s theorem
concerns infinite objects, not finite matroids. Moreover V -logic is
first-order, and is therefore different from the logic used to
axiomatize matroids.

We made some partial progress towards resolving Whitney’s
question in a paper entitled ‘Is the missing axiom of matroid theory
lost forever?’.

Because of more recent progress, we now plan on publishing ‘Yes,
the missing axiom of matroid theory is lost forever’.
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Theorem (Vámos — 1978)

Representable V -matroids cannot be characterized by adding a
single sentence in V -logic to the (infinite) list of V -matroid axioms.

This does not resolve Whitney’s question, as Vámos’s theorem
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Theorem (Vámos — 1978)

Representable V -matroids cannot be characterized by adding a
single sentence in V -logic to the (infinite) list of V -matroid axioms.

This does not resolve Whitney’s question, as Vámos’s theorem
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Representability in MS0

Theorem (Mayhew, Newman, Whittle — 2013)

There is no finite sentence, S , in MS0 such that {I1, I2, I3,S}
exactly characterizes the set of representable matroids.



Monadic second-order logic

Features of MS0

I Subset variables X1,X2,X3, ...

I A unary independence predicate, Ind

I A unary singleton predicate, Sing

I Relations, ⊆, =

I Logical symbols, ∃, ∀, ∧, ∨, ¬, →, ↔

We can axiomatize matroids in MS0, and for any fixed matroid N,
we can make the statement ‘contains a minor isomorphic to N’.



Preliminaries

Definition

Let M1 = (E1,B1) and M2 = (E2,B2) be matroids such that
E1 ∩ E2 = ∅. Then

M1 ⊕M2 = (E1 ∪ E2, {B1 ∪ B2 : B1 ∈ B1, B2 ∈ B2})

is a matroid, the direct sum of M1 and M2.

Proposition

For any prime p, there is a matroid, PG(2, p), the projective plane
of order p, that is representable only over fields of characteristic p.



Finite-state automata for matroids

We construct a finite-state machine that operates on the matroid
M = (E , I) and subsets X1, ... ,Xn ⊆ E .

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1
...

1 1 1 1

1 1 1 0

1 1 0 1
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0 1 1 1

1 1 0 1

T

T

F

F

T

F

F

T

...

︸
︷︷

︸
︸

︷︷
︸

Characteristic vectors
of X1, ... ,Xn.

Characteristic vectors
of subsets of E , in
lexicographical order.

State-space
indicator Independence

indicator



Finite-state automata for matroids

The machine employs readers to crawl through the matrix.
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Finite-state automata for matroids

Depending on its current state, and the symbols under the readers,
the machine can direct the readers to move down one space, or wait.
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Finite-state automata for matroids

Depending on its current state, and the symbols under the readers,
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Finite-state automata for matroids

When all the readers have reached a waiting state...
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Finite-state automata for matroids

... they all move one space right, and the process continues.
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Finite-state automata for matroids

... they all move one space right, and the process continues.
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Finite-state automata for matroids

The machine halts when all readers are in the final column. It
accepts (M;X1, ... ,Xn) if it is in an accepting state when it halts.
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Finite-state automata for matroids

We also want the machine to operate on pairs of matrices, which
represent direct sums of matroids.

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1
...

1 1 1 1

1 1 1 0

1 1 0 1

1 1 0 0

0 1 1 1

1 1 0 1

T

T

F

F

T

F

F

T

...

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 1
...

1 1 1 1

1 1 1 1

1 1 1 0

1 1 1 0

0 1 1 1

1 1 0 1

T

T

T

T

F

F

T

T

...

1

1

0

1

0

1

1

0

1

0



Finite-state automata for matroids

When the readers reach the final column of one matrix...

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1
...

1 1 1 1

1 1 1 0

1 1 0 1

1 1 0 0

0 1 1 1

1 1 0 1

T

T

F

F

T

F

F

T

...

F

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 1
...

1 1 1 1

1 1 1 1

1 1 1 0

1 1 1 0

0 1 1 1

1 1 0 1

T

T

T

T

F

F

T

T

...

1

1

0

1

0

1

1

0

1

0



Finite-state automata for matroids

When the readers reach the final column of one matrix... they start
in the top left corner of the next.
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Finite-state automata for matroids

For any statement ψ in MS0, there is a machine which will accept
(M;X1, ... ,Xn) if and only if ψ applied to (M;X1, ... ,Xn) is true.
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Theorem proof

Theorem (Mayhew, Newman, Whittle — 2013)

There is no finite sentence, S , in MS0 such that {I1, I2, I3,S}
exactly characterizes the set of representable matroids.

Assume such a sentence exists. Consider the machine that accepts
M if and only if S holds for M. This machine has finitely many
states.

There exist distinct primes p and p′ such that the machine halts in
the same accepting state when applied to PG(2, p) and PG(2, p′).

What state does the machine halt in when applied to
PG(2, p)⊕ PG(2, p) and PG(2, p′)⊕ PG(2, p)?



Theorem proof

Theorem (Mayhew, Newman, Whittle — 2013)

There is no finite sentence, S , in MS0 such that {I1, I2, I3,S}
exactly characterizes the set of representable matroids.

Assume such a sentence exists. Consider the machine that accepts
M if and only if S holds for M. This machine has finitely many
states.

There exist distinct primes p and p′ such that the machine halts in
the same accepting state when applied to PG(2, p) and PG(2, p′).

What state does the machine halt in when applied to
PG(2, p)⊕ PG(2, p) and PG(2, p′)⊕ PG(2, p)?



Theorem proof

Theorem (Mayhew, Newman, Whittle — 2013)

There is no finite sentence, S , in MS0 such that {I1, I2, I3,S}
exactly characterizes the set of representable matroids.

Assume such a sentence exists. Consider the machine that accepts
M if and only if S holds for M. This machine has finitely many
states.

There exist distinct primes p and p′ such that the machine halts in
the same accepting state when applied to PG(2, p) and PG(2, p′).

What state does the machine halt in when applied to
PG(2, p)⊕ PG(2, p) and PG(2, p′)⊕ PG(2, p)?



Theorem proof

Theorem (Mayhew, Newman, Whittle — 2013)

There is no finite sentence, S , in MS0 such that {I1, I2, I3,S}
exactly characterizes the set of representable matroids.

Assume such a sentence exists. Consider the machine that accepts
M if and only if S holds for M. This machine has finitely many
states.

There exist distinct primes p and p′ such that the machine halts in
the same accepting state when applied to PG(2, p) and PG(2, p′).

What state does the machine halt in when applied to
PG(2, p)⊕ PG(2, p) and PG(2, p′)⊕ PG(2, p)?


