Counting Matroids, Entropy and Compression

Rudi Pendavingh

June 26, 2013
Motivation

Question

How many bits suffice to store any matroid of rank r on n elements?

By a theorem of Knuth, there are at least $2 \frac{n^r}{n}$ such matroids. So at least $\frac{n^r}{n}$ bits.

In fact, number of bits = $\log_2(\# \text{of matroids})$.
Motivation

Question

How many bits suffice to store any matroid of rank \(r \) on \(n \) elements?

By a theorem of Knuth, there are at least \(2^{\binom{n}{r}/n} \) such matroids.

So at least \(\binom{n}{r}/n \) bits.
Question

How many bits suffice to store any matroid of rank r on n elements?

By a theorem of Knuth, there are at least $2^{\binom{n}{r}/n}$ such matroids. So at least $\binom{n}{r}/n$ bits. *In fact, number of bits = $\log_2(\# \text{ of matroids})$*
Motivation

Question

How many bits suffice to store any matroid of rank r on n elements?

By a theorem of Knuth, there are at least $2^{(n \choose r)/n}$ such matroids.
So at least $(n \choose r)/n$ bits. In fact, number of bits $= \log_2(\# \text{ of matroids})$

Question

How many bits suffice to store any matroid of rank r on n elements in a way that supports a rank oracle that takes $O(n^k)$ time?
Motivation

Question

How many bits suffice to store any matroid of rank r on n elements?

By a theorem of Knuth, there are at least $2^{\binom{n}{r}/n}$ such matroids.
So at least $\binom{n}{r}/n$ bits. In fact, number of bits $= \log_2(\# \ of \ matroids)$

Question

How many bits suffice to store any matroid of rank r on n elements in a way that supports a rank oracle that takes $O(n^k)$ time?

$\binom{n}{r}$ bits suffice to store bases; rank oracle takes $O(n^3)$ time from that data.
Motivation

Question

How many bits suffice to store any matroid of rank \(r \) on \(n \) elements?

By a theorem of Knuth, there are at least \(2^{\binom{n}{r}}/n \) such matroids. So at least \(\binom{n}{r}/n \) bits. In fact, number of bits = \(\log_2(\# \text{ of matroids}) \)

Question

How many bits suffice to store any matroid of rank \(r \) on \(n \) elements in a way that supports a rank oracle that takes \(O(n^k) \) time?

\(\binom{n}{r} \) bits suffice to store bases; rank oracle takes \(O(n^3) \) time from that data.

Question

How do you construct a random matroid?
Motivation

'Asymptotically almost all matroids have property \mathcal{P}' if

$$\lim_{n \to \infty} \frac{\#\{M \in \mathcal{M}_n : M \text{ has property } \mathcal{P}\}}{\#\mathcal{M}_n} = 1$$

where $\mathcal{M}_n := \{ M \text{ matroid : } E(M) = \{1, \ldots, n\}\}$.

The following are due to Mayhew, Newman, Welsh & Whittle (2010):

Conjecture
Asymptotically, almost all matroids are sparse paving.

Conjecture
For any k, asymptotically all matroids are k-connected.

Conjecture
If N is a sparse paving matroid, then a.a. matroids have an N-minor.
Motivation

'Asymptotically almost all matroids have property \mathcal{P}' if

$$\lim_{n \to \infty} \frac{\#\{M \in \mathbb{M}_n : M \text{ has property } \mathcal{P}\}}{\#\mathbb{M}_n} = 1$$

where $\mathbb{M}_n := \{ M \text{ matroid : } E(M) = \{1, \ldots, n\}\}$.

The following are due to Mayhew, Newman, Welsh & Whittle (2010):

Conjecture

Asymptotically, almost all matroids are sparse paving.

Conjecture

For any k, asymptotically all matroids are k-connected.

Conjecture

If N is a sparse paving matroid, then a.a. matroids have an N-minor.
Motivation

Conjecture

The number of single-element extensions of any matroid of rank r on n elements is at most the number of single-element extensions of $U(r, n)$.
Motivation

Conjecture

The number of single-element extensions of any matroid of rank \(r \) on \(n \) elements is at most the number of single-element extensions of \(U(r, n) \).

Question

What determines the number of extensions of any given matroid?
Motivation

Conjecture

The number of single-element extensions of any matroid of rank r on n elements is at most the number of single-element extensions of $U(r, n)$.

Question

What determines the number of extensions of any given matroid?

Question

What determines the number of extensions of any given matroid within a minor-closed class?
Motivation

Conjecture

The number of single-element extensions of any matroid of rank r on n elements is at most the number of single-element extensions of $U(r, n)$.

Question

What determines the number of extensions of any given matroid?

Question

What determines the number of extensions of any given matroid within a minor-closed class?
Part I: Counting matroids by Entropy
The Loomis-Whitney inequality

Theorem (Loomis & Whitney, 1949)

Let $S \subseteq \mathbb{Z}^3$ be a finite set. Then

$$|S|^2 \leq |S_{xy}| \ |S_{xz}| \ |S_{yz}|$$

where S_{uv} denotes the projection of S on the uv-plane.
The Loomis-Whitney inequality

Theorem (Loomis & Whitney, 1949)

Let $S \subseteq \mathbb{Z}^3$ be a finite set. Then

$$|S|^2 \leq |S_{xy}| \cdot |S_{xz}| \cdot |S_{yz}|$$

where S_{uv} denotes the projection of S on the uv-plane.

... yes, that’s Hassler Whitney.
The Loomis-Whitney inequality

Theorem (Loomis & Whitney, 1949)

Let $S \subseteq \mathbb{Z}^3$ be a finite set. Then

$$|S|^2 \leq |S_{xy}| \cdot |S_{xz}| \cdot |S_{yz}|$$

where S_{uv} denotes the projection of S on the uv-plane.

... yes, that’s Hassler Whitney.

A modern proof uses *Shearers’ Entropy Lemma*
Shearers’ Entropy Lemma

A random variable taking values in a finite set \mathcal{X}.

Definition

The entropy of X is $H(X) := \sum_{x \in \mathcal{X}} P(X = x) \log_2 \frac{1}{P(X = x)}$.

Note: $H(X) \leq \log_2 |\mathcal{X}|$, with equality iff X is drawn uniformly from \mathcal{X}.

If $X = (X_1, \ldots, X_n)$, we write $X_{\{a_1, \ldots, a_k\}} := (X_{a_1}, \ldots, X_{a_k})$.

Theorem (Shearer, 1986)

Suppose X takes values in $\mathcal{X} = \mathcal{X}_1 \times \cdots \times \mathcal{X}_n$. Let $A_1, \ldots, A_m \subseteq \{1, \ldots, n\}$ such that $\#\{i \mid j \in A_i\} \geq k$ for $j = 1, \ldots, n$. Then $kH(X) \leq m \sum_{i=1}^n H(X_{A_i})$.

Proof: essentially, that $f : A \mapsto H(X_{A_i})$ is submodular.
Shearers’ Entropy Lemma

X a random variable taking values in a finite set \mathcal{X}.

Definition

The *entropy* of X is $H(X) := \sum_{x \in \mathcal{X}} P(X = x) \log_2 \frac{1}{P(X=x)}$.

Note: $H(X) \leq \log_2 |\mathcal{X}|$, with equality iff X is drawn uniformly from \mathcal{X}.

If $X = (X_1, \ldots, X_n)$, we write $X_{\{a_1, \ldots, a_k\}} := (X_{a_1}, \ldots, X_{a_k})$.

Theorem (Shearer, 1986)

Suppose X takes value in $\mathcal{X} = \mathcal{X}_1 \times \cdots \times \mathcal{X}_n$. Let $A_1, \ldots, A_m \subseteq \{1, \ldots, n\}$ be such that $\# \{ i \mid j \in A_i \} \geq k$ for $j = 1, \ldots, n$. Then $kH(X) \leq m \sum_{i=1}^m H(X_{A_i})$.

Proof: essentially, that $f: A \mapsto H(X_{A})$ is submodular.
Shearers’ Entropy Lemma

X a random variable taking values in a finite set \mathcal{X}.

Definition

The *entropy* of X is $H(X) := \sum_{x \in \mathcal{X}} \mathbb{P}(X = x) \log_2 \frac{1}{\mathbb{P}(X = x)}$.

Note: $H(X) \leq \log_2 |\mathcal{X}|$, with equality iff X is drawn uniformly from \mathcal{X}.
Shearers' Entropy Lemma

X a random variable taking values in a finite set \mathcal{X}.

Definition

The *entropy* of X is $H(X) := \sum_{x \in \mathcal{X}} \mathbb{P}(X = x) \log_2 \frac{1}{\mathbb{P}(X = x)}$.

Note: $H(X) \leq \log_2 |\mathcal{X}|$, with equality iff X is drawn uniformly from \mathcal{X}.

If $X = (X_1, \ldots, X_n)$, we write $X_{\{a_1, \ldots, a_k\}} := (X_{a_1}, \ldots, X_{a_k})$.
Shearers’ Entropy Lemma

Let X be a random variable taking values in a finite set \mathcal{X}.

Definition

The *entropy* of X is $H(X) := \sum_{x \in \mathcal{X}} \mathbb{P}(X = x) \log_2 \frac{1}{\mathbb{P}(X = x)}$.

Note: $H(X) \leq \log_2 |\mathcal{X}|$, with equality iff X is drawn uniformly from \mathcal{X}.

If $X = (X_1, \ldots, X_n)$, we write $X_{\{a_1, \ldots, a_k\}} := (X_{a_1}, \ldots, X_{a_k})$.

Theorem (Shearer, 1986)

Suppose X takes value in $\mathcal{X} = \mathcal{X}_1 \times \cdots \times \mathcal{X}_n$. Let $A_1, \ldots, A_m \subseteq \{1, \ldots, n\}$ be such that $\#\{i \mid j \in A_i\} \geq k$ for $j = 1, \ldots, n$. Then

$$kH(X) \leq \sum_{i=1}^{m} H(X_{A_i})$$
Shearers’ Entropy Lemma

X a random variable taking values in a finite set \mathcal{X}.

Definition

The entropy of X is $H(X) := \sum_{x \in \mathcal{X}} P(X = x) \log_2 \frac{1}{P(X=x)}$.

Note: $H(X) \leq \log_2 |\mathcal{X}|$, with equality iff X is drawn uniformly from \mathcal{X}.

If $X = (X_1, \ldots, X_n)$, we write $X_{\{a_1, \ldots, a_k\}} := (X_{a_1}, \ldots, X_{a_k})$.

Theorem (Shearer, 1986)

Suppose X takes value in $\mathcal{X} = \mathcal{X}_1 \times \cdots \times \mathcal{X}_n$. Let $A_1, \ldots, A_m \subseteq \{1, \ldots, n\}$ be such that $\#\{i \mid j \in A_i\} \geq k$ for $j = 1, \ldots, n$. Then

$$kH(X) \leq \sum_{i=1}^m H(X_{A_i})$$

Proof: essentially, that $f : A \mapsto H(X_A)$ is submodular.
The proof of Loomis-Whitney

Theorem (Loomis & Whitney, 1949)

Let $S \subseteq \mathbb{Z}^3$ be a finite set. Then

$$|S|^2 \leq |S_{xy}| |S_{xz}| |S_{yz}|$$

where S_{uv} denotes the projection of S on the uv-plane.
The proof of Loomis-Whitney

Theorem (Loomis & Whitney, 1949)

Let $S \subseteq \mathbb{Z}^3$ *be a finite set. Then*

$$|S|^2 \leq |S_{xy}| |S_{xz}| |S_{yz}|$$

where S_{uv} *denotes the projection of* S *on the* uv-*plane.*

Proof.

Let X *be a random variable drawn uniformly from* $S \subseteq \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$.

- $H(X) = \log_2 |S|$
The proof of Loomis-Whitney

Theorem (Loomis & Whitney, 1949)

Let $S \subseteq \mathbb{Z}^3$ be a finite set. Then

$$|S|^2 \leq |S_{xy}| \cdot |S_{xz}| \cdot |S_{yz}|$$

where S_{uv} denotes the projection of S on the uv-plane.

Proof.

Let X be a random variable drawn uniformly from $S \subseteq \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$.

- $H(X) = \log_2 |S|$
- $H(X_{\{1,2\}}) \leq \log_2 |S_{xy}|$, $H(X_{\{1,3\}}) \leq \log_2 |S_{xz}|$, $H(X_{\{2,3\}}) \leq \log_2 |S_{yz}|$
The proof of Loomis-Whitney

Theorem (Loomis & Whitney, 1949)

Let $S \subseteq \mathbb{Z}^3$ be a finite set. Then

$$|S|^2 \leq |S_{xy}| |S_{xz}| |S_{yz}|$$

where S_{uv} denotes the projection of S on the uv-plane.

Proof.

Let X be a random variable drawn uniformly from $S \subseteq \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$.

- $H(X) = \log_2 |S|$
- $H(X_{\{1,2\}}) \leq \log_2 |S_{xy}|$, $H(X_{\{1,3\}}) \leq \log_2 |S_{xz}|$, $H(X_{\{2,3\}}) \leq \log_2 |S_{yz}|$
- By Shearers’ Lemma,

$$2H(X) \leq H(X_{\{1,2\}}) + H(X_{\{1,3\}}) + H(X_{\{2,3\}})$$

So $2 \log_2 |S| \leq \log_2 |S_{xy}| + \log_2 |S_{xz}| + \log_2 |S_{yz}|$
A matroid counting lemma

We write $[n] := \{1, \ldots, n\}$ and

$$\mathcal{M}_{n,r} := \{M \text{ matroid} \mid E(M) = [n], r(M) = r\}.$$

Let \mathcal{M} be a class of matroids M with $E(M) \subseteq \mathbb{N}$, closed under

- contraction
- order-preserving isomorphism

We write $m_{n,r} := |\mathcal{M} \cap \mathcal{M}_{n,r}|$

Lemma (Bansal, P., van der Pol, 2012)

For any $1 \leq t \leq r \leq n$:

$$\log_2(m_{n,r} + 1)/\binom{n}{r} \leq \log_2(m_{n-t,r-t} + 1)/\binom{n-t}{r-t}$$
Lemma (Bansal, P., van der Pol, 2012)

For any $1 \leq t \leq r \leq n$:
$$\log_2(m_{n,r} + 1)/\binom{n}{r} \leq \log_2(m_{n-t,r-t} + 1)/\binom{n-t}{r-t}$$
Lemma (Bansal, P., van der Pol, 2012)

For any $1 \leq t \leq r \leq n$: $\log_2(m_{n,r} + 1)/C_n^r \leq \log_2(m_{n-t,r-t} + 1)/C_{n-t}^{r-t}$

Proof.

Write $E := [n]$, and let X be drawn uniformly from

$$\{\chi^B \in \{0, 1\}^\binom{E}{r} \mid B \text{ satisfies basis exchange axiom}\}$$

- $H(X) = \log_2(m_{n,r} + 1)$
Lemma (Bansal, P., van der Pol, 2012)

For any \(1 \leq t \leq r \leq n\): \(\log_2(m_{n,r} + 1) / \binom{n}{r} \leq \log_2(m_{n-t, r-t} + 1) / \binom{n-t}{r-t}\)

Proof.

Write \(E := [n]\), and let \(X\) be drawn uniformly from

\[
\{ \chi^B \in \{0, 1\}^{E(r)} | B \text{ satisfies basis exchange axiom} \}
\]

- \(H(X) = \log_2(m_{n,r} + 1)\)
- Let \(T \in \binom{E}{t}\), put

\[
X / T := X_{\{B \in \binom{E}{r} | T \subseteq B\}}
\]

Then \(H(X / T) \leq \log_2(m_{n-t, r-t} + 1)\)
Lemma (Bansal, P., van der Pol, 2012)

For any $1 \leq t \leq r \leq n$: \[
\log_2 \binom{m_{n,r} + 1}{r} \leq \log_2 \left(\binom{m_{n-t,r-t} + 1}{r-t} \right)
\]

Proof.

Write $E := [n]$, and let X be drawn uniformly from

\[
\{ \chi^B \in \{0, 1\}^\binom{E}{r} \mid B \text{ satisfies basis exchange axiom} \}
\]

- $H(X) = \log_2 (m_{n,r} + 1)$
- Let $T \in \binom{E}{t}$, put

 \[
 X/T := X_{\{B \in \binom{E}{r} \mid T \subseteq B\}}
 \]

 Then $H(X/T) \leq \log_2 (m_{n-t,r-t} + 1)$
- By Shearers’ Lemma, \[
 \binom{r}{t} H(X) \leq \sum_{T \in \binom{E}{t}} H(X/T)
 \]
A bound on the number of matroids

Lemma (Bansal, P., van der Pol, 2012)

For any $1 \leq t \leq r \leq n$:

$$\log_2(m_{n,r} + 1)/\binom{n}{r} \leq \log_2(m_{n-t,r-t} + 1)/\binom{n-t}{r-t}$$

In case $M =$ all matroids, we have $m_{n,2} + 1 \leq (n + 1)^n$, hence

Theorem (Bansal, P., van der Pol, 2012)

$$\log m_n \leq O\left(\frac{\log(n)}{n} \left(\binom{n}{\lfloor n/2 \rfloor}\right)\right)$$
Part II: Counting matroids by Compression
Matroid covers

Let $M = (E, B)$ be a matroid of rank r.
Matroid covers

Let $M = (E, \mathcal{B})$ be a matroid of rank r.

Definition

A dependent set X is *covered* by a set F if $|X \cap F| > r_M(F)$.

Then F certifies that X is dependent.
Matroid covers

Let $M = (E, B)$ be a matroid of rank r.

Definition

A dependent set X is *covered* by a set F if $|X \cap F| > r_M(F)$

Then F certifies that X is dependent.

Definition

A set $Z \subseteq 2^E$ covers M if

$$B = \{ X \in \binom{E}{r} \mid \text{no element of } Z \text{ covers } X \}$$

If Z covers M, then $\{(F, r_M(F)) \mid F \in Z\}$ characterizes M.

A cover Z is a compressed description of M.
Cover complexity

Definition (Cover complexity)

The *cover complexity* of M is $\kappa(M) := \min\{|Z| : Z \text{ covers } M\}$.

Lemma

If M is a minor of N, then $\kappa(M) \leq \kappa(N)$.

If M arises from N by relaxing a circuit-hyperplane, then $\kappa(M) = \kappa(N) - 1$.

Unless e is a loop or a coloop.
Cover complexity

Definition (Cover complexity)

The *cover complexity* of M is $\kappa(M) := \min\{|Z| : Z \text{ covers } M\}$.

Lemma

- $\kappa(M^*) = \kappa(M)$
- If M is a minor of N, then $\kappa(M) \leq \kappa(N)$
- $\kappa(M) \leq \kappa(M \setminus e) + \kappa(M/e)$, unless e is a loop or a coloop
- If M arises from N by relaxing a circuit-hyperplane, then
 \[\kappa(M) = \kappa(N) - 1 \]
Lemma

The number of matroids $M \in \mathcal{M}_{n,r}$ with $\kappa(M) \leq k$ is at most

$$\sum_{i=0}^{k} \binom{2^nr}{i}$$

Proof: if \mathcal{Z} covers M, then $\{(F, r_M(F)) : F \in \mathcal{Z}\} \subseteq 2^n \times \{0, \ldots, r - 1\}$ characterizes M.
Cover complexity and counting

Lemma

The number of matroids \(M \in \mathbb{M}_{n,r} \) with \(\kappa(M) \leq k \) is at most

\[
\sum_{i=0}^{k} \binom{2^n r}{i}
\]

Proof: if \(\mathcal{Z} \) covers \(M \), then \(\{(F, r_M(F)) : F \in \mathcal{Z}\} \subseteq 2^n \times \{0, \ldots, r - 1\} \) characterizes \(M \).

Theorem

Suppose \(\mathcal{M} \) is a class of matroids so that

\[
\max\{\kappa(M) : M \in \mathcal{M} \cap \mathbb{M}_{n}\} \leq O(\log(n)2^n/n^\alpha) \text{ as } n \to \infty
\]

for some constant \(\alpha > 0 \). Then

\[
\log |\mathcal{M} \cap \mathbb{M}_n| \leq O(\log(n)^2 2^n/n^\alpha) \text{ as } n \to \infty.
\]
Fractional cover complexity

The fractional cover complexity of a matroid $M = (E, \mathcal{B})$ is $\kappa^*(M) :=$

$$\min \{ \sum_{F} z_F \mid z : 2^E \to \mathbb{R}_+, \sum_{F: F \text{ covers } X} z_F \geq 1 \text{ for each non-basis } X \text{ of } M \}$$

This the LP relaxation of the 'IP' that defines $\kappa(M)$. So: $\kappa^*(M) \leq \kappa(M)$.
Fractional cover complexity

The fractional cover complexity of a matroid $M = (E, \mathcal{B})$ is $\kappa^*(M) := \min\{\sum F \rightarrow \mathbb{R}_+ | \sum F \geq 1 \text{ for each non-basis } X \text{ of } M\}$

This the LP relaxation of the 'IP' that defines $\kappa(M)$. So: $\kappa^*(M) \leq \kappa(M)$.

Lemma

If $M \in \mathbb{M}_{n,r}$, then $\kappa(M) \leq \kappa^*(M) (\ln(\binom{n}{r}/\kappa^*(M)) + 1)$.
Fractional cover complexity

The fractional cover complexity of a matroid $M = (E, B)$ is $\kappa^*(M) :=$

$$\min\{\sum_{F} z_F | z : 2^E \rightarrow \mathbb{R}_+, \sum_{F: F \text{ covers } X} z_F \geq 1 \text{ for each non-basis } X \text{ of } M\}$$

This the LP relaxation of the 'IP' that defines $\kappa(M)$. So: $\kappa^*(M) \leq \kappa(M)$.

Lemma

If $M \in \mathcal{M}_{n,r}$, then $\kappa(M) \leq \kappa^*(M)(\ln((n/r)/\kappa^*(M)) + 1)$.

Theorem (P., van der Pol, 2012)

If \mathcal{M} is closed under contraction and isomorphism, then

$$\frac{\max\{\kappa^*(M) : M \in \mathcal{M} \cap \mathcal{M}_{n,r}\}}{\binom{n}{r}} \leq \frac{\max\{\kappa^*(M) : M \in \mathcal{M} \cap \mathcal{M}_{n-t,r-t}\}}{\binom{n-t}{r-t}}$$
Theorem (P., van der Pol, 2012)

If \mathcal{M} is closed under contraction and isomorphism, then

$$\max\{\kappa^*(M) : M \in \mathcal{M} \cap \mathbb{M}_{n,r}\} \leq \max\{\kappa^*(M) : M \in \mathcal{M} \cap \mathbb{M}_{n-t,r-t}\}$$

$$\binom{n}{r} \leq \binom{n-t}{r-t}$$
Theorem (P., van der Pol, 2012)

If \(\mathcal{M} \) is closed under contraction and isomorphism, then

\[
\max \{ \kappa^*(M) : M \in \mathcal{M} \cap \mathbb{M}_{n,r} \} \leq \frac{\max \{ \kappa^*(M) : M \in \mathcal{M} \cap \mathbb{M}_{n-t,r-t} \}}{\binom{n}{r}}
\]

Consider \(\mathcal{M} = \) all matroids.
Theorem (P., van der Pol, 2012)

If \mathcal{M} is closed under contraction and isomorphism, then

$$\max\left\{ \kappa^*(M) : M \in \mathcal{M} \cap \mathcal{M}_{n,r} \right\} \leq \max\left\{ \kappa^*(M) : M \in \mathcal{M} \cap \mathcal{M}_{n-t,r-t} \right\}$$

Consider $\mathcal{M} = \text{all matroids}$.

Lemma

If $M \in \mathcal{M}_{n,1}$, then $\kappa(M) \leq 1$.
Theorem (P., van der Pol, 2012)

If \mathcal{M} is closed under contraction and isomorphism, then

$$\max\left\{ \kappa^*(M) : M \in \mathcal{M} \cap \mathbb{M}_{n,r} \right\} \leq \max\left\{ \kappa^*(M) : M \in \mathcal{M} \cap \mathbb{M}_{n-t,r-t} \right\}$$

Consider $\mathcal{M} =$ all matroids.

Lemma

If $M \in \mathbb{M}_{n,1}$, then $\kappa(M) \leq 1$.

Hence:

$$\max\left\{ \kappa^*(M) : M \in \mathbb{M}_{n,r} \right\} \leq \max\left\{ \kappa(M) : M \in \mathbb{M}_{n-r+1,1} \right\} \leq \frac{1}{n-r+1}$$

Theorem

$$\log m_n \leq O(\log(n)^2 2^n / n^{3/2}).$$
Theorem (P., van der Pol, 2012)

If \mathcal{M} is closed under contraction and isomorphism, then

$$\max \{ \kappa^*(M) : M \in \mathcal{M} \cap \mathbb{M}_{n,r} \} \leq \frac{\max \{ \kappa^*(M) : M \in \mathcal{M} \cap \mathbb{M}_{n-t,r-t} \}}{\binom{n}{r}} \leq \frac{\max \{ \kappa^*(M) : M \in \mathcal{M} \cap \mathbb{M}_{n-t,r-t} \}}{\binom{n-t}{r-t}}$$
Theorem (P., van der Pol, 2012)

If \mathcal{M} is closed under contraction and isomorphism, then

$$\max\{\kappa^*(M) : M \in \mathcal{M} \cap \mathbb{M}_{n,r}\} \leq \frac{\max\{\kappa^*(M) : M \in \mathcal{M} \cap \mathbb{M}_{n-t,r-t}\}}{\binom{n}{r}} \leq \frac{\max\{\kappa^*(M) : M \in \mathcal{M} \cap \mathbb{M}_{n-t,r-t}\}}{\binom{n-t}{r-t}}$$

Consider $\mathcal{M} =$ matroids without $U_{2,k}$-minor.
Theorem (P., van der Pol, 2012)

If \(\mathcal{M} \) is closed under contraction and isomorphism, then

\[
\max\{\kappa^*(M) : M \in \mathcal{M} \cap \mathbb{M}_{n,r}\} \leq \max\{\kappa^*(M) : M \in \mathcal{M} \cap \mathbb{M}_{n-t,r-t}\}
\]

Consider \(\mathcal{M} = \) matroids without \(U_{2,k} \)-minor.

Lemma

If \(M \in \mathbb{M}_{n,2} \) has no \(U_{2,k} \)-minor, then \(\kappa(M) \leq k \).
Theorem (P., van der Pol, 2012)

If \(\mathcal{M} \) is closed under contraction and isomorphism, then

\[
\max\{ \kappa^*(M) : M \in \mathcal{M} \cap \mathcal{M}_{n,r} \} \leq \max\{ \kappa^*(M) : M \in \mathcal{M} \cap \mathcal{M}_{n-t,r-t} \}
\]

Consider \(\mathcal{M} = \) matroids without \(U_{2,k} \)-minor.

Lemma

If \(M \in \mathcal{M}_{n,2} \) has no \(U_{2,k} \)-minor, then \(\kappa(M) \leq k \).

Hence:

\[
\max\{ \kappa^*(M) : M \in \mathcal{M}_{n,r} \} \leq \max\{ \kappa(M) : M \in \mathcal{M}_{n-r+2,2} \} \leq \frac{k}{\binom{n-r+2}{2}}
\]

Theorem

\[
\log |\mathcal{M} \cap \mathcal{M}_n| \leq O(\log(n)^22^n/n^{5/2}).
\]
Theorem (P., van der Pol, 2012)

If \(\mathcal{M} \) is closed under contraction and isomorphism, then

\[
\frac{\max\{ \kappa^*(M) : M \in \mathcal{M} \cap \mathbb{M}_{n,r} \}}{\binom{n}{r}} \leq \frac{\max\{ \kappa^*(M) : M \in \mathcal{M} \cap \mathbb{M}_{n-t,r-t} \}}{\binom{n-t}{r-t}}
\]

Consider \(\mathcal{M} = \) matroids without \(N \)-minor, where \(N = U_{3,6}, P_6, Q_6, \) or \(R_6 \).

Lemma

If \(M \in \mathbb{M}_{n,3} \) has no \(N \)-minor, then \(\kappa(M) \leq O(n) \).

Hence:

\[
\frac{\max\{ \kappa^*(M) : M \in \mathbb{M}_{n,r} \}}{\binom{n}{r}} \leq \frac{\max\{ \kappa(M) : M \in \mathbb{M}_{n-r+3,3} \}}{\binom{n-r+3}{3}} \leq \frac{cn}{\binom{n-r+3}{3}}
\]

Theorem

\[
\log |\mathcal{M} \cap \mathbb{M}_n| \leq O(\log(n)^2 2^n / n^{5/2}).
\]
Even better compression of matroids.

We may construct a description of $M = (E, B)$ of rank r consisting of

- a 'very small' set $S \subseteq \binom{E}{r}$, which determines a 'small' set $A \subseteq \binom{E}{r}$
- a 'very small' cover of all nonbases in $\binom{E}{r} \setminus A$
- a description of the bases inside A, using only $|A|$ bits

Here 'very small' is $O(\log(n)/n^2 \binom{n}{r})$, 'small' is $\leq 2/n\binom{n}{r}$.

Even better compression of matroids..

We may construct a description of $M = (E, \mathcal{B})$ of rank r consisting of
- a 'very small' set $S \subseteq \binom{E}{r}$, which determines a 'small' set $A \subseteq \binom{E}{r}$
- a 'very small' cover of all nonbases in $\binom{E}{r} \setminus A$
- a description of the bases inside A, using only $|A|$ bits

Here 'very small' is $O\left(\log(n)/n^2\binom{n}{r}\right)$, 'small' is $\leq 2/n\binom{n}{r}$.

Such compression yields:

Theorem (Bansal, P., van der Pol, 2012)

$$\log m_n \leq \frac{2}{n} \left(\binom{n}{\lfloor n/2 \rfloor}\right) (1 + o(1))$$
Even better compression of matroids.

We may construct a description of $M = (E, B)$ of rank r consisting of

- a 'very small' set $S \subseteq \binom{E}{r}$, which determines a 'small' set $A \subseteq \binom{E}{r}$
- a 'very small' cover of all nonbases in $\binom{E}{r} \setminus A$
- a description of the bases inside A, using only $|A|$ bits

Here 'very small' is $O(\log(n)/n^2 \binom{n}{r})$, 'small' is $\leq 2/n \binom{n}{r}$.

Such compression yields:

Theorem (Bansal, P., van der Pol, 2012)

$$\log m_n \leq \frac{2}{n} \left(\frac{n}{\lfloor n/2 \rfloor} \right) \left(1 + o(1) \right)$$

Theorem (Knuth, 1974)

$$\log m_n \geq \frac{1}{n} \left(\frac{n}{\lfloor n/2 \rfloor} \right)$$