Inequivalent representations over GF(7)

Dillon Mayhew

Joint work with Rhiannon Hall, Geoff Whittle, Stefan van Zwam

Equivalence of representations

Let $M = (E, \mathcal{I})$ be a matroid.

A and A' are matrices over a field that represent M: the columns of A and A' are labeled by the elements of E and $X \subseteq E$ is in \mathcal{I} if and only if X labels a linearly independent set of columns.

A and A' are equivalent if one is obtained from the other by:

- adding a row to another,
- scaling rows/columns by non-zero numbers,
- permuting rows and columns,
- deleting/adding zero rows.

Let $n_q(M)$ be the number of equivalence classes of matrices that represent M over GF(q).

Kahn's conjecture

If q = 2, 3, 4, then $n_q(M) \le 2$, for any 3-connected GF(q)-representable matroid M.

Conjecture (Kahn - 1988)

Let q be a prime power. There exists integer N_q such that

$$n_q(M) \leq N_q$$

for any 3-connected GF(q)-representable matroid M.

Fixed elements

Let e, e' be elements in matroid M. If the transposition of e and e' is an automorphism of M, e and e' are clones.

If e is an element of M, and M' is single-element extension of M by e' such that e and e' are clones, then M' is a clonal extension.

If such an M' exists with $\{e, e'\}$ independent, then e is free, otherwise e is fixed.

Fixed elements

Assume e is fixed in M, and both

$$\left[\begin{array}{c|c} A & x \end{array}\right] \quad \text{and} \quad \left[\begin{array}{c|c} A & x' \end{array}\right]$$

represent M. Then

$$\mathbf{x}' = \lambda \mathbf{x}$$

for some non-zero λ .

So in this case,

$$n_q(M) \leq n_q(M \backslash e).$$

If e is cofixed (fixed in M^*), then $n_q(M) \leq n_q(M/e)$.

Let Blah-connectivity be a type of connectivity.

Assume we want to bound

 $\max\{n_q(M) \mid M \text{ is Blah-connected and } GF(q)\text{-representable}\}.$

Let Blah-connectivity be a type of connectivity.

Assume we want to bound

 $\max\{n_q(M) \mid M \text{ is Blah-connected and } GF(q)\text{-representable}\}.$

If M' is Blah-connected, and is produced from M by a sequence of:

- deleting a fixed element, where the deletion is Blah-connected,
- contracting a cofixed element, where the contraction is Blah-connected,

then $n_q(M) \leq n_q(M')$.

Let Blah-connectivity be a type of connectivity.

Assume we want to bound

$$\max\{n_q(M) \mid M \text{ is Blah-connected and } GF(q)\text{-representable}\}.$$

If M' is Blah-connected, and is produced from M by a sequence of:

- deleting a fixed element, where the deletion is Blah-connected,
- contracting a cofixed element, where the contraction is Blah-connected,

then
$$n_q(M) \leq n_q(M')$$
.

M' is a Blah-skeleton if no further moves of this type can be performed.

M' is a Blah-skeleton if

- ► M' is Blah-connected,
- ▶ if e is fixed in M', then $M' \setminus e$ is not Blah-connected,
- ▶ if e is cofixed in M', then M'/e is not Bah-connected.

```
\max\{n_q(M) \mid M \text{ is Blah-connected, } \mathsf{GF}(q)\text{-representable}\} \le \max\{n_q(M') \mid M' \text{ is a } \mathsf{GF}(q)\text{-representable Blah-skeleton}\}
```

Therefore the aim is to characterise GF(q)-representable Blah-skeletons. (We hope there are finitely many of them.)

If Blah-connectivity = 3-connectivity, then there are infinitely many GF(q)-representable Blah-skeletons for $q \ge 7$, and they have arbitrarily many inequivalent representations.

If Blah-connectivity = 3-connectivity, then there are infinitely many GF(q)-representable Blah-skeletons for $q \geq 7$, and they have arbitrarily many inequivalent representations.

This corresponds to a negative answer to Kahn's conjecture.

Theorem (Oxley, Vertigan, Whittle – 1996)

If q = 2, 3, 4, 5, then $n_q(M) \le 6$ for all 3-connected GF(q)-representable matroids M.

If q is a prime power and $q \ge 7$, then

 $\{n_q(M) \mid M \text{ is 3-connected and } GF(q)\text{-representable}\}$

contains arbitrarily large integers.

If Blah-connectivity = 4-connectivity, then there are not enough Blah-skeletons: there is no obvious inductive method to find them all.

If Blah-connectivity = 4-connectivity, then there are not enough Blah-skeletons: there is no obvious inductive method to find them all.

What connectivity is just right....?

If Blah-connectivity = 4-connectivity, then there are not enough Blah-skeletons: there is no obvious inductive method to find them all.

What connectivity is just right....?

5-coherence = no swirl-like 5-flower

$$\lambda(P_i)=2$$

$$\lambda(P_i \cup P_j) = \begin{cases} 2 \text{ if } P_i \text{ and } P_j \text{ are consecutive} \\ 3 \text{ otherwise} \end{cases}$$

If Blah-connectivity = 5-coherent, then there is a chain theorem that enables us to find all skeletons inductively.

Theorem (Geelen, Whittle)

Let M be a non-empty (5-coherent) skeleton. Then M has a minor M' such that M' is a skeleton and $|E(M)| - |E(M)'| \le 4$.

If |E(M)| - |E(M')| > 1, then we have strong information about how M' is obtained from M.

Theorem (Geelen, Whittle)

Let p be a prime. Then there are finitely many $\mathsf{GF}(p)$ -representable (5-coherent) skeletons.

Theorem (Geelen, Whittle)

Let p be a prime. Then there are finitely many GF(p)-representable (5-coherent) skeletons.

Corollary

If p is a prime, then there is an integer N_p such that

$$n_p(M) \leq N_p$$

for every 4-connected GF(p)-representable matroid M.

Theorem (Geelen, Whittle)

Let p be a prime. Then there are finitely many GF(p)-representable (5-coherent) skeletons.

Corollary

If p is a prime, then there is an integer N_p such that

$$n_p(M) \leq N_p$$

for every 4-connected GF(p)-representable matroid M.

Question

What is N_7 ?

GF(7)-representable skeletons

GF(7)-representable skeletons

GF(7)-representable skeletons

Numbers of $\mathsf{GF}(7)$ -representable skeletons.

Size of ground set	Number of skeletons
4	1
5	2
6	4
7	10
8	28
9	18
10	20
11	16
12	28

► The number of skeletons is now know to be too large for a paper-and-pencil search.

- ► The number of skeletons is now know to be too large for a paper-and-pencil search.
- ▶ Have considered a different notion of 'fixed' to try and reduce the number of skeletons, but it appears that under this notion it is not straightforward to prove a chain theorem.

- ► The number of skeletons is now know to be too large for a paper-and-pencil search.
- Have considered a different notion of 'fixed' to try and reduce the number of skeletons, but it appears that under this notion it is not straightforward to prove a chain theorem.
- Issues with computer search.
 - Have to find all possible representations of skeletons.

- ► The number of skeletons is now know to be too large for a paper-and-pencil search.
- ▶ Have considered a different notion of 'fixed' to try and reduce the number of skeletons, but it appears that under this notion it is not straightforward to prove a chain theorem.
- Issues with computer search.
 - ▶ Have to find all possible representations of skeletons.
 - ► Search space is large, need to use structure from the Geelen/Whittle chain theorem to reduce it.