Open Problem Session – Dec 14

The organizers of the Graphs and Matroids Seminar would like to invite you to participate in our Open Problem Session!

The session will take place on Tuesday, December 14 from 1:30 to 4:00pm EST with social time afterwards on Gather Town. For each problem, we’ll have ~5 minutes for the presentation followed by ~5 minutes for discussion. We’re planning to have two sessions of about an hour each with a break in between.

Call for presenters: If you would like to present an open problem, please email Shayla (shaylaredlin at gmail dot com) and let us know if you would prefer presenting in the first hour or the last hour of the session. Please email by Friday, Dec 10.

More details about the schedule and how to attend will be posted closer to Dec 14.

 – Jim, Peter, and Shayla


Online Talk: Tom Kelly

Tuesday, Nov 23, 3:30pm ET (8:30pm GMT, 9:30am Wed NZDT)
Tom Kelly, University of Birmingham
Coloring hypergraphs of small codegree, and a proof of the Erdős–Faber–Lovász conjecture

The theory of edge-coloring hypergraphs has a rich history with important connections and application to other areas of combinatorics e.g. design theory and combinatorial geometry. A long-standing problem in the field is the Erdős–Faber–Lovász conjecture (posed in 1972), which states that the chromatic index of any linear hypergraph on $n$ vertices is at most $n$. In joint work with Dong Yeap Kang, Daniela Kühn, Abhishek Methuku, and Deryk Osthus, we proved this conjecture for every sufficiently large $n$. Recently, we also solved a related problem of Erdős from 1977 on the chromatic index of hypergraphs of small codegree. In this talk, I will survey the history behind these results and discuss some aspects of the proofs.

Online Talk: Nathan Bowler

Tuesday, Nov 16, 3pm ET (8pm GMT, 9am Wed NZDT)
Nathan Bowler, University of Hamburg
Infinite Maker-Breaker games

Consider a game played on a countably infinite complete graph, in which two players, called Maker and Breaker, alternately claim edges. Maker’s aim is that after infinitely many moves she should have claimed all edges of some infinite complete subgraph, and Breaker’s aim is to prevent this. Marit Emde recently found a winning strategy for Maker in this game. We’ll investigate a number of variants of this basic game, and the kinds of winning strategies Maker and Breaker have in them.